
Ребро куба $ABCDA_1B_1C_1D_1$ равно a. Постройте сечение куба, проходящее через точку C и середину ребра AD параллельно прямой DA_1 , и найдите площадь этого сечения.

M – середина ребра AD.

- 1. Т.к. точки C и M принадлежат сечению и грани ABCD, то сечение пересекает грань ABCD по прямой CM.
- 2. Прямая DA_1 и точка M принадлежат грани AA_1D_1D , и т.к. прямая DA_1 параллельна сечению, то сечение пересекает грань AA_1D_1D по прямой, проходящей через точку M параллельно прямой DA_1 , эта прямая пересекает ребро AA_1 в точке N.
- 3. Грани AA_1D_1D и BB_1C_1C параллельны, и т.к. сечение пересекает грань AA_1D_1D по прямой, параллельной DA_1 , то и грань BB_1C_1C оно пересекает по прямой, параллельной DA_1 . Точка C принадлежит грани BB_1C_1C и сечению, значит линия пересечения грани BB_1C_1C с сечением проходит через точку C, и т.к. она параллельна DA_1 , то это диагональ CB_1 грани BB_1C_1C .

Соединяем точки B_1 и N и получаем сечение – четырёхугольник $CMNB_1$.

 $MN \parallel DA_1$ и $CB_1 \parallel DA_1 \Rightarrow MN \parallel CB_1$. $CB_1 = DA_1 = a\sqrt{2}$ (как диагонали квадратов со стороной a). MN — средняя линия треугольника DA_1A , поэтому $MN = \frac{DA_1}{2} = \frac{a\sqrt{2}}{2}$ и

 $DM=AM=AN=NA_{\scriptscriptstyle 1}=rac{a}{2}$. $\Delta NA_{\scriptscriptstyle 1}B=\Delta MDC$ по 2-м катетам: $NA_{\scriptscriptstyle 1}=MD$ и $A_{\scriptscriptstyle 1}B_{\scriptscriptstyle 1}=DC$,

значит, $NB_1=MC$, и $CMNB_1$ — равнобочная трапеция с основаниями CB_1 и $MN.\ NP$ и

MH – высоты этой трапеции. NPHM – прямоугольник, $PH = MN = \frac{a\sqrt{2}}{2}$,

 $B_1P + CH = B_1C - PH = a\sqrt{2} - \frac{a\sqrt{2}}{2} = \frac{a\sqrt{2}}{2}$; $\Delta NB_1P = \Delta MCH$ по гипотенузе и острому

углу: $NB_1 = MC$, $\angle NB_1P = \angle MCH$ и поэтому $B_1P = CH = \frac{a\sqrt{2}}{4}$. По теореме Пифагора

$$NB_1^2 = NA_1^2 + A_1B_1^2 = \frac{a^2}{4} + a^2 = \frac{5a^2}{4}; NP^2 + PB_1^2 = NB_1^2, NP^2 = NB_1^2 - PB_1^2;$$

 $NP^2 = \frac{5a^2}{4} - \frac{a^2}{8} = \frac{9a^2}{8}$; $NP = \frac{3a}{2\sqrt{2}} = \frac{3a\sqrt{2}}{4}$. Площадь сечения:

$$S_{CMNB_1} = \frac{1}{2}(CB_1 + MN) \cdot NP = \frac{1}{2} \left(a\sqrt{2} + \frac{a\sqrt{2}}{2} \right) \cdot \frac{3a\sqrt{2}}{4} = \frac{9a^2}{8}.$$