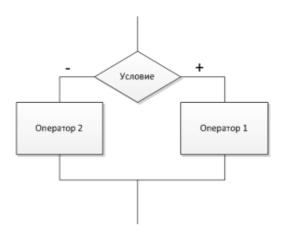
# Министерство образования Республика Башкортостан ГАПОУ Уфимский топливно-энергетический колледж

| Рассмотрено      | УТВЕРЖДАЮ           |
|------------------|---------------------|
| На заседании МЦК | Зам. директора УТЭК |
| Протокол №       | Пономарева Л.Ф.     |
| Председатель     | « <u></u> »2015г.   |
| Мипованова М И   |                     |

РАЅСАL. РЕШЕНИЕ ЗАДАЧ С РАЗВЕТВЛЯЮЩЕЙСЯ СТРУКТУРОЙ. Методическое пособие по выполнению лабораторной работы Составитель – Шайбакова Л.М

# Лабораторная работа №23


**Тема работы:** Написание разветвляющихся программ на языке Pascal.

<u>**Цель работы:**</u> Научиться описывать разветвляющиеся алгоритмы на языке Pascal. Освоить применение условного оператора в языке Pascal. Освоить применение оператора выбора в языке Pascal.

# ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

**Разветвляющийся вычислительный процесс** – он нужен для того, чтобы можно было реализовать ветвление, где при выполнении условия выполняется определенное действие, а при его нарушении уже другое.

В блок-схеме разветвляющийся процесс обозначается так :



# Условия в языке Pascal можно проверить 2-мя способами

- 1. Условный оператор
- 2. Оператор выбора

Синтаксис условного оператора:

**If** <**У**словие> **then** <**О**ператор 1>

**Else** <Оператор 2> ;

Такая структура условного оператора называется полной формой. Неполная форма условного оператора

Синтаксис

**If**  $\leq$ Условие $\geq$  **then**  $\leq$ Оператор 1>;

Условный оператор может быть простым и составным.

Если после служебного слова **then** или **else** стоит не один, а несколько операторов, то они заключаются в операторные скобки (**begin** ... **end**), и говорят, что такая форма условного оператора называется составной.

```
If < Условие > then

Begin

<Oператор 1>;

<Oператор 2>;

End

Else

Begin

<Oператор 3>;

<Oператор 4>;

End;

End;

Ecли после then или else стоят операторные скобки begin − end, то выполняются действия описанные в них ( все последующие операции ).

У условного оператора есть вложенная форма или сложная форма. Это форма представляет собой конструкцию, которая содержит после then или else еще один условный оператор.

If <Условие 2> then <Oператор 1>
```

If <Условие 2> then <Oператор 1>
Else <Oператор 2> ;
Else
If <Условие 3> then
Begin
<Oператор 3>;
<Oператор 4> ;

Оператор выбора позволяет выбрать одно из нескольких возможных продолжений программы. Параметром, по которому осуществляется выбор, служит так называемый ключ выбора (или селектор) - выражение любого типа (кроме типов REAL и STRING).

Общая форма записи следующая:

End;

```
саѕе Выражение оf значение1 : оператор (группа операторов); значение2 : оператор (группа операторов); ...... значениеN : оператор (группа операторов) else оператор (группа операторов); end;
```

Оператор выбора работает следующим образом. Сначала вычисляется значение выражения, стоящего после зарезервированного слова **case**, а затем выполняется оператор (или составной оператор), соответствующий результату вычисления выражения.

Может случиться, что в списке выбора не окажется константы, равной вычисленному значению ключа. В этом случае управление передается оператору, стоящему за словом ELSE.

Например,

```
case NUMBER mod 2 of 0: writeln (NUMBER, '- число четное') else writeln (NUMBER, '- число нечетное'); end;
```

Если один оператор выполняется при нескольких значениях, то их можно перечислить через запятую.

#### case MONTH of

```
1, 2, 3 : writeln ('Первый квартал');
4, 5, 6 : writeln ('Второй квартал');
7, 8, 9 : writeln ('Третий квартал');
10, 11, 12 : writeln ('Четвёртый квартал');
end;
```

Оператором может являться не только простой оператор, но также составной и пустой операторы.

```
case CODE of
```

Любому заданному значению селектора соответствует лишь один вход в списке операторов. Константы должны принадлежать тому же типу, что и селектор. Если селектор принимает значение, которому не соответствует ни один вход, то будет выполняться оператор, следующий за словом else. Если же этого оператора нет, то никакие альтернативы не будут выполняться.

# Ход работы.

- 1. Запишите полный и сокращенный вид условного оператора.
- 2. Запишите общий вид оператора выбора.
- 3. Запишите условия на языке Pascal(варианты указаны в Приложении №1)
- 4. Написать программу на языке Pascal(варианты указаны в Приложении№2)
- 5. В отчете указать листинг программы и блок схему.

#### Ответить на следующие вопросы:

- 1. Какие служебные слова используются для соединения двух или более условий?
- 2. Сколько действий выполняется после оператора then?

Вариант №1

Если x>10 или x<-10 то y=x+5

Вариант №2

Если x 10 или x<10 то y=x.

Вариант №3

Если A>10 или B>10 то C=10.

Вариант №4

Если A>10 и B 10 то C=A.

Вариант №5

Если a < 0 и b < 0 то с max=d в другом случае c = 0.

Вариант №6

Если n=0 или m<10 то k=n+m

Вариант №7

Если a > max и b < min то c = (a + b)/2 в другом случае c = 0

Вариант №8

Если U<0 иV<0 то C=10+U

Вариант №9

Если D<0 то c= «корней нет».

Вариант №10

Если a < 3 и b > 3 то c = 3 в другом случае max=c.

Вариант №11

Если D=0 то x = -d/2a.

Вариант №12

Если c<0 то вывести «задача решений не имеет»

Вариант №13

Если x<0 тогда вывести «один корень», в ином случае «корней нет»

Вариант №14

Если b>5 и c>5 тогда d=25

Вариант №15

Если a > b и b > c тогда a = max + 3.

## Вариант №1

Меньшее из двух заданных чисел возведите в квадрат, а большее уменьшите в 2 раза. Если числа равно, то найдите их сумму.

# Вариант №2

Даны 2 переменные A и B. Если A>B, то вывести на печать их произведение, в противном случае сумму.

## Вариант №3

Найти квадрат суммы максимального и минимального из 4 чисел.

#### Вариант №4

Найти натуральный логарифм максимального из трех чисел.

#### Вариант №5

Найти косинус минимального из 4 заданных чисел.

#### Вариант №6

Найти максимальное и минимальное из 4 заданных чисел.

## Вариант №7

Задано произвольное целое число. Если они больше 50,то уменьшаете его в два раза, в противном случае возвести в квадрат.

#### Вариант №8

Задано произвольное число. Проверить является ли оно четным.

#### Вариант №9

Задано произвольное число. Проверить является ли оно нечетным.

#### Вариант №10

Заданы стороны треугольника. Проверить является ли он прямоугольным.

#### Вариант №11

Найти квадрат произведения нечетных чисел в промежутке от 1 до 15.

## Вариант №12

Вывести на экран синус максимального из 3 заданных чисел.

#### Вариант №13

Задано 3 числа определить косинус какого из чисел является наибольшим.

## Вариант №14

Вывести на экран синус максимального из 3 заданных чисел.

#### Вариант №15

Вывести на экран среднее арифметическое максимального и минимального из 3 чисел.