Контрольная работа №1. Динамика точки

Интегрирование дифференциальных уравнений движения точки.

Тело массой m, получив в точке A начальную скорость V_0 , движется по поверхности АВС, расположенной в вертикальной плоскости (табл. 15 а). В точке C тело покидает поверхность и в точке E падает на берег рва. Движение тела разбито на три участка.

- 1. На участке АВ на тело, кроме силы тяжести, действуют движущая сила Q и сила сопротивления среды R. Трением тела о поверхность на участке AB пренебречь.
- 2. В точке B тело, не изменяя величины своей скорости движения, переходит на **участок** BC, где на него действуют сила тяжести, сила трения (коэффициент трения скольжения груза о поверхность f = 0,2) и переменная сила F . Время движения груза по участку BC составляет t = 4 c.
- 3. Движение тела на **участке** СЕ происходит под действием силы тяжести; сопротивлением воздуха пренебречь.

Требуется, считая тело материальной точкой и зная расстояние AB = L, или время движения тела на участке AB - t вычислить:

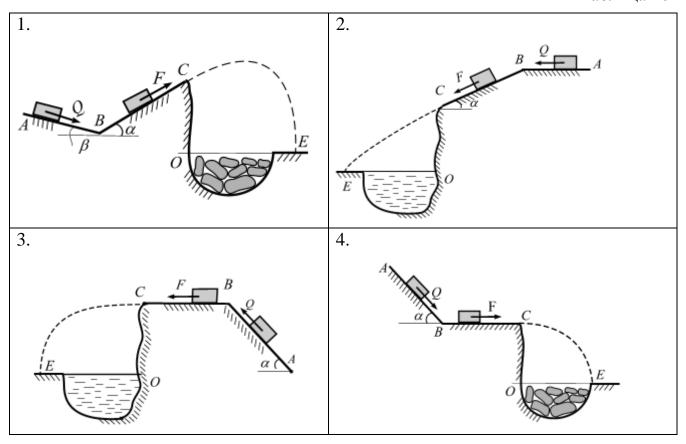
- единицы измерения коэффициента μ в выражении R;
- скорость движения тело в точке $B-V_{_{\mathrm{R}}}$;
- уравнение движения тело на участке BC x = f(t);
- скорость движения тело в точке $C(V_C)$ в момент времени 4c;
- уравнение траектории движения тела на участке $CE y_3 = f(x_3)$.

Для выполнения задания численные данные представлены в табл. 15, схемы – в табл. 16.

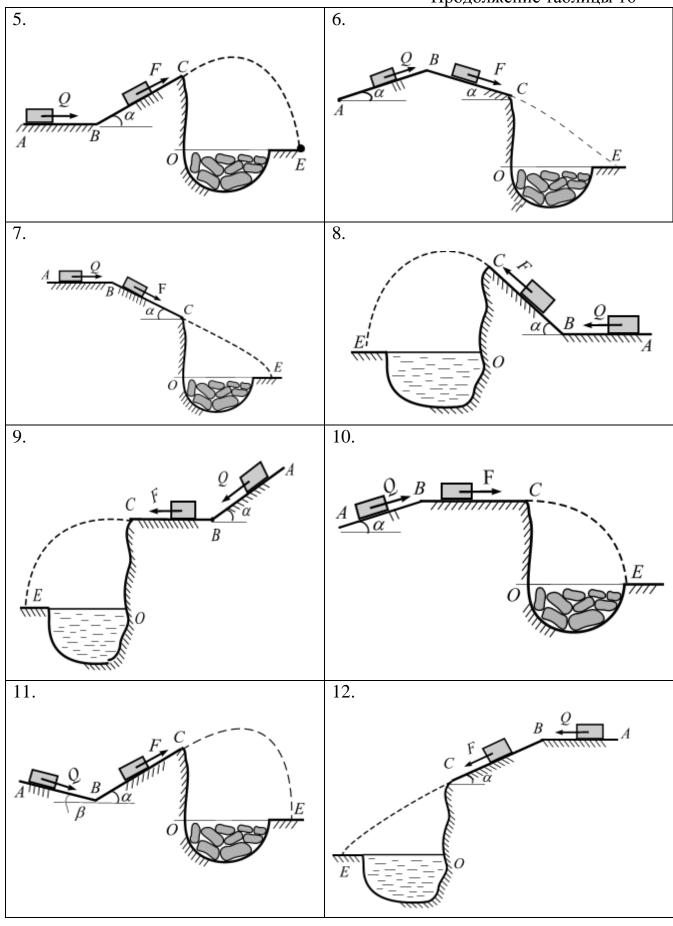
Номер строки в табл. 15 соответствует последней цифре номера зачетной книжки (e), а номер рисунка в табл. 16 соответствуют сумме последних трёх цифр номера зачетной книжки ($z+\partial+e$).

Примечание:

Решение задачи разбивается на три части: последовательно составляют дифференциальные уравнения движения груза на участках АВ, ВС и СЕ. На участке AB, при интегрировании в случае, когда задана длина участка (L), целесообразно перейти к переменной z (z – координата на оси направленной


от точки **A** к точке **B**), учтя, что
$$\frac{dV_z}{dt} = V_z \frac{dV_z}{dz}$$
.

Для успешного выполнения и защиты этого задания необходимо усвоить материал п. 1 рабочей программы.


Таблица 15

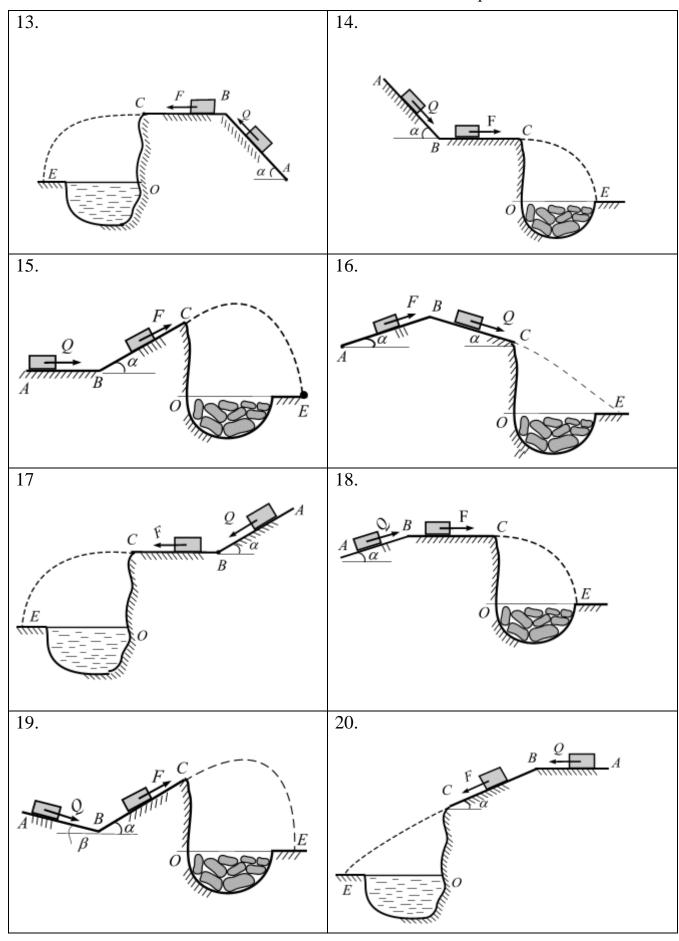
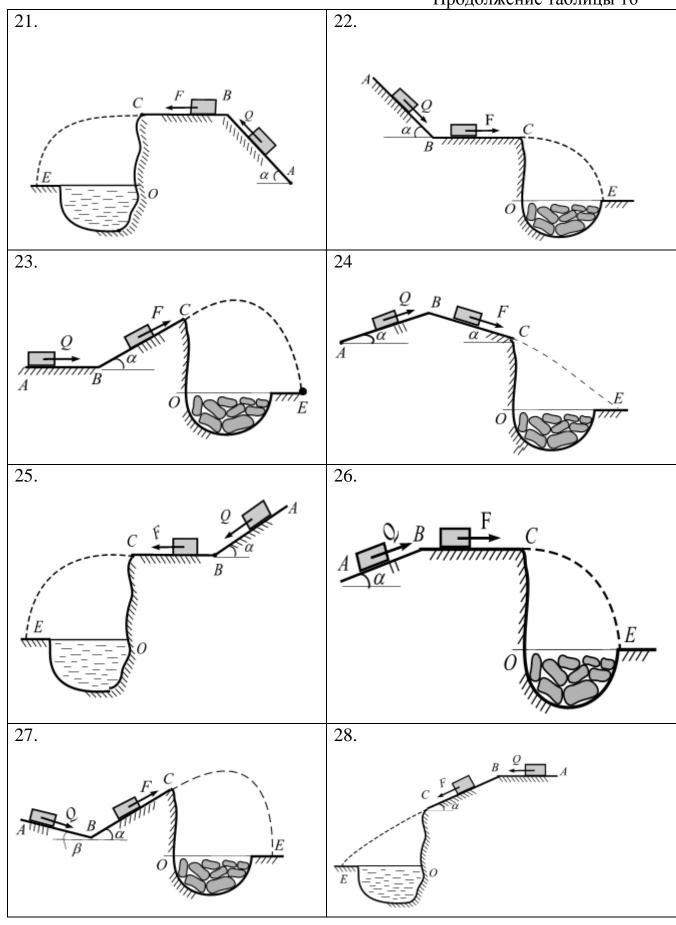

Номер	m,	V0,	Q,	R,	μ	L,	τ1,	Fx,	α.	CO,
схемы	кг	м/с	Н	H		М	c	H		\mathcal{M}
1	2	20	6	μV	0,4	-	2,5	20t	30o	2
2	2,4	12	6	μV^2	0,8	1,5	-	$12t^2$	60o	5
3	4,5	18	9	μV	0,5	-	3	50t	45o	3
4	6	14	18	μV^2	0,6	5		$24t^2$	30o	4
5	1,6	18	4	μV	0,4	-	2	16t	60o	6
6	8	10	16	μV^2	0,5	4	-	$28t^2$	45o	9
7	1,8	15	5	μV	0,3	-	2	18t	30o	8
8	4	12	12	μV^2	0,8	2,5	-	$15t^2$	60o	7
9	3	22	9	μV	0,5	-	3	30t	45o	5
0	4,8	10	12	μV^2	0,2	4	-	$21t^2$	30o	2

Таблица 16



Продолжение таблицы 16

Продолжение таблицы 16

