Ладно не претендуя на баллы и абсолютную истину примерно можно так Пусть наша экпериментальная установка примерно соответсвует рисунку

Лаба1 Измерение ускорения тела при равноускоренном движении

Цель работы: измерить ускорение шарика, скатывающегося по наклонному желобу.

Оборудование: Желоб, штатив с муфтой и зажимом, металлический цилиндр, стальной шарик, рулетка (измерительная лента), секундомер механический типа СОПпр-1в-3-000

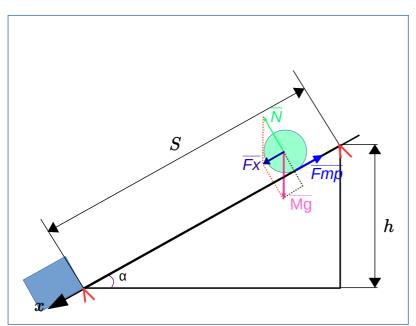


Рисунок 1: Схематичное изображение экспериментальной установки

Соберем экспериментальную установку схематично изображенную на рисунке 1. Введем в ней систему координат. Ось *х* направим вдоль желоба. Нанесем на желобе две метки и измерим расстояние *s* межу ними. Начало отсчета примем на месте первой метки

Если пренебречь потерями на трение, движение шарика по желобу можно приближенно считать равноускоренным. Тогда, учитывая что отсчет координаты *х* ведется от 0, b и начальная скорость равна 0 зависимость координаты от времени:

$$x = \frac{at^2}{2} \quad (1)$$

Соответственно пройденный путь s:

$$s = \frac{at^2}{2}$$
 (2)

Значит, измерив пройденный путь s и время можно определить ускорение a по формуле:

$$a = \frac{2s}{t^2} \quad (3)$$

Результаты измерений и расчетов заносим в таблицу 1:

Таблица 1

№ опыта	S (M)	t (c)	$\langle t \rangle$ (c)	$a(m/c^2)$
1		1,4		
2		1,6		
3	1	1,2	1,44	0,96
4		1,8		
5		1,2		

Погрешности величин измеряемых напрямую зависят от используемого инструмента. Абсолютная погрешность ускорения вычисляется исходя из погрешностей измеренных величин, входящих в формулу (3) по формуле:

$$\sigma_a = \sqrt{\left(\frac{2\sigma_s}{t^2}\right)^2 + \left(\frac{4s\sigma_t}{t^3}\right)^2} \quad (4)$$

σ_а — абсолютная погрешность измерения ускорения;

σ_S — абсолютная погрешность измерения длины пути;

 σ_t — абсолютная погрешность измерения времени;

Относительные погрешности величин рассчитываем по формуле

$$\varepsilon_i = \frac{\sigma_i}{A_i} \cdot 100\% \quad (5)$$

 ϵ_{i} — относительная погрешность измерения величины;

σ_і — абсолютная погрешность измерения величины

A_i — измеренная величина (среднее значение в случае многократных измерений)

Погрешности измерений и расчетов заносим в таблицу 2.

Таблица 2. Погрешности измерений

Величины →	S	t	a
Тип погрешности↓			
Инструментальная	0,005 (м)	0,2 (c)	-
Случайная	-	0,12 (c)	-
Полная (абсолютная)	0,005	0,23	0,07
Относительная %	0,5	16	7,4

Измеренное значение ускорения $a=0.96\pm0.07$ м/с².

Как видно из таблицы 2 погрешность измерения оказалась довольно сносной (менее 10%). Основной вклад в погрешность измерения ускорения вносит довольно значительная ошибка измерения времени.