
$$f(x)=x^2$$
,если 0 cos x,если $x\geq \frac{\pi}{2}$

Ну я понимаю как то так надо

$$f(x) = \begin{cases} \sin(x) & x \le 0 \\ x^2 & 0 < x < \frac{\pi}{2} \\ \cos(x) & x \ge \frac{\pi}{2} \end{cases}$$

Х	у
-6,00	0,279
-5,75	0,508
-5,50	0,706
-5,25	0,859
-5,00	0,959
-4,75	0,999
-4,50	0,978
-4,25	0,895
-4,00	0,757
-3,75	0,572
-3,50	0,351
-3,25	0,108
-3,00	-0,141
-2,75	-0.382
-2,50	-0,598
-2,25	-0,778
-2,00	-0,909
-1,75	-0,984
-1,50	-0,997
-1,25	-0,949
-1,00	-0,949
-0,75	-0,682
-0,75	-0,082
-0,25 0,00	-0,247
	0,000
0,10	0,010
0,25	0,063
0,50	0,250
0,75	0,563
1,00	1,000
1,25	1,563
1,50	2,250
1,52	2,310
1,55	2,403
1,57	0,000
1,58	-0,009
1,60	-0,029
2,25	-0,628
2,50	-0,801
2,75	-0,924
3,00	-0,990
3,25	-0,994
3,50	-0,936
3,75	-0,821
4,00	-0,654
4,25	-0,446
4,50	-0,211
4,75	0,038
5,00	0,284
5,25	0,512
5,50	0,709
5,75	0,709
6,00	0,960
6,25	0,999
6,50	0,977
6,75	0,893
7,00	0,754
7,25	0,568
7,50	0,347
7,75	0,104
8,00	-0,146
8,25	-0,386
8,50	-0,602
8,75	-0,781
9,00	-0,911
9,25	-0,985
9,50	-0,997
9,75	-0,948
10,00	-0,839
· · · · · · · · · · · · · · · · · · ·	

1. При $x \in [-\infty; 0]$

Функция периодическая с периодом 2π . Болтается в пределах от -1 до 1.

Локальные минимумы равные -1 достигаются в точках

$$x = -\frac{\pi}{2} - 2\pi k$$
, $k \in \mathbb{N}$

Локальные максимумы равные 1 достигаются в точках

$$x = -\frac{3\pi}{2} - 2\pi k, \ k \in \mathbb{N}$$

Функция имеет также множество нулей в точках

$$x = -\pi - 2\pi k$$
, $k \in \mathbb{N}$

Интервалы возрастания на этом участке можно определить так

$$x \in \left[-\frac{5\pi}{2} - 2k\pi; \frac{3\pi}{2} - 2k\pi \right], k \in 0, \mathbb{N}$$

u

$$x \in \left[-\frac{\pi}{2}; 0\right)$$

Интервалы убывания на этом участке можно определить так

$$x \in \left[-\frac{3\pi}{2} - 2k\pi; \frac{\pi}{2} - 2k\pi \right], k \in \mathbb{N}$$

2. На интервале $x \in \left[0, \frac{\pi}{2}\right]$ это ветвь параболы. Тут она

монотонно возрастает крайняя точка «выколота». Поэтому максимального значения на этом интервале в частности и функция вообще не достигает. Но есть предельное значение

$$f\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4}$$

$$x = \frac{\pi}{2}$$

Функция испытывает разрыв типа скачка.

Есть также один ноль в точке x=0.

3. Далее на интервале
$$x \in \left[\frac{\pi}{2}; +\infty\right)$$
 Функция периодическая с периодом 2π . Болтается

в пределах от -1 до 1. При желании можно описать по аналогии с участком 1.

Локальные минимумы равные -1 достигаются в точках

$$x = \frac{3\pi}{2} + 2\pi k, \ k \in \mathbb{N}$$

Локальные максимумы равные 1 достигаются в точках

$$x=2\pi+2\pi k, k \in \mathbb{N}$$

Функция имеет также множество нулей в точках

$$x = \frac{\pi}{2} + \pi k$$
, $k \in \mathbb{N}$

Интервалы возрастания на этом участке можно определить так

$$x \in [\pi + 2k\pi; 2\pi + 2k\pi], k \in \mathbb{N}$$

Интервалы убывания на этом участке можно определить так

$$x \in \left[\frac{\pi}{2}; \pi\right] \cup \left[2\pi + 2k\pi; 3\pi + 2k\pi\right), \ k \in \mathbb{N}$$