Математика 5-6 класс

СОДЕРЖАНИЕ

Натуральные числа	4
Арифметические действия над натуральными числами	11
Делимость чисел	26
Решение уравнений	32
Задачи на движение	35
Обыкновенные дроби	43
Десятичные дроби	56
Действия с дробями	74
Проценты	79
Пропорции	82
Рациональные числа	85
Координатная плоскость	94
Угол	96
Треугольник	99
Прямоугольник и квадрат	102
Прямоугольный параллелепипед и куб	104
Длина окружности и площадь круга	106
Список алгоритмов	108
Ответы к заданиям «Выполни самостоятельно!»	112

НАТУРАЛЬНЫЕ ЧИСЛА

ОБОЗНАЧЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Натуральные числа — это числа, которые используются при счете предметов.

Важно знать!

- 1 самое маленькое натуральное число.
- Наибольшего натурального числа не существует.
- 0 не является натуральным числом.
- Натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
- В ряду натуральных чисел каждое следующее число больше предыдущего на 1.
- Натуральные числа записывают с помощью цифр 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

ЗАПИСЬ И ЧТЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Для чтения многозначных чисел их разбивают справа на группы по три цифры в каждой. Эти группы называют классами. Разрядом называют то место, на котором стоит цифра в записи натурального числа.

В каждом классе три разряда.

Классы	VI класс		III класс		II класс		I класс					
Разряды		Класс миллиардов				Класс тысяч		Класс единиц				
	сотни миллиардов	десятки миллиардов	единицы миллиардов	сотни миллионов	десятки миллионов	единицы миллионов	сотни тысяч	десятки тысяч	единицы тысяч	сотни	десятки	единицы
	7	0	2	3	5	4	0	2	3	0	0	9

В таблице записано число 702 354 023 009 (семьсот два миллиарда триста пятьдесят четыре миллиона двадцать три тысячи девять).

Помни!

Цифра 0 в записи натурального числа обозначает отсутствующий разряд в числе (он не называется при чтении числа).

Полезно знать!

Кроме указанных часто используемых классов натуральных чисел существуют и другие:

- Класс триллионов (V класс, $10^{12} = 1\ 000\ 000\ 000$).
- Класс квадриллионов (VI класс, $10^{15} = 1\ 000\ 000\ 000\ 000\ 000$).
- Класс квинтиллионов (VII класс, 10¹⁸).
- Класс секстиллионов (VIII класс, 10^{21}).
- Класс септиллионов (IX класс, 10^{24}).

Чтение многозначных натуральных чисел

АЛГОРИТМ

1

Разбить число на классы (справа налево точкой отделить по три цифры в записи числа).

2 Определить количество классов и назвать их по таблице.

 \Box

Читать число, называя количество единиц старшего класса, и добавить его название, затем количество единиц следующего от него справа класса и добавить его название, закончить количеством единиц первого класса, не называя название класса.

ПРИМЕР

Прочитать число: $205\,649\,780\,037$.

- (1) 205.649.780.037
- Четыре класса: класс миллиардов, класс миллионов, класс тысяч, класс единиц.
- З Двести пять миллиардов шестьсот сорок девять миллионов семьсот восемьдесят тысяч тридцать семь.

Прочитать числа:

1) 1037985347;

3) 369899555324;

2) 38005001;

4) 5000012.

Запись многозначных натуральных чисел

АЛГОРИТМ

Определив количество классов в числе, ставим в каждом классе по три точки.

В направлении слева направо вместо точек старшего класса числа записываем единицы разрядов этого класса.

Продолжаем записывать вместо точек оставшиеся цифры числа (слева направо).

ПРИМЕР

Записать число двадцать девять миллиардов триста восемьдесят миллионов сорок пять тысяч два.

Решение.

- В данном числе четыре класса. В старшем из них (классе миллиардов) нет разряда сотен. Ставим точки:
- ② Вместо точек IV класса записываем 29: 29
- Вместо оставшихся точек записываем остальные цифры числа (слева направо) 29 380 045 002

Помни!

- Старший класс записывают цифрой, отличной от нуля.
- Удобно отделять небольшими промежутками класс от класса при записи числа.
- Если в числе отсутствует разряд какого-нибудь класса, то на месте единиц этого разряда пишут нули.

Записать числа цифрами:

- 1) семьсот сорок пять миллиардов шестьсот двадцать три миллиона девятьсот семнадцать тысяч сто сорок один;
- 2) два миллиарда три миллиона сорок тысяч триста двадцать семь:
- 3) семь миллионов пятьсот семь тысяч девять;
- 4) двадцать миллионов два.

Запись натурального числа в виде суммы разрядных слагаемых

3

АЛГОРИТМ

Определить, сколько классов в числе.

2 Определить для каждой цифры числа соответствующий ей разряд.

Умножить цифру числа на соответствующую разрядную единицу.

Записать данное число в виде суммы полученных произведений. (Эта запись называется записью числа в виде суммы разрядных слагаемых.)

ПРИМЕР

Записать число 827030720146 в виде суммы разрядных слагаемых.

- В данном числе четыре класса.
- 8 сотен миллиардов, 2 десятка миллиардов, 7 единиц миллиардов, 0 сотен миллионов, 3 десятка миллионов, 0 единиц миллионов, 7 сотен тысяч, 2 десятка тысяч, 0 единиц тысяч, 1 сотня, 4 десятка, 6 единиц.

```
8 · 1000000000000;
```

- $2 \cdot 100000000000;$
- $7 \cdot 10000000000$;
- $0 \cdot 100000000;$
- $3 \cdot 10000000;$
- 0.1000000;
 - $7 \cdot 100000$;
 - 2 · 10000:
 - $0 \cdot 1000;$
 - $1 \cdot 100;$
 - $4 \cdot 10;$
 - $6 \cdot 1$

$$\begin{array}{l} 827\,030\,720\,146 = 8\cdot 100\,000\,000\,000 + 2\cdot 10\,000\,000\,000 + \\ + \, 7\,\cdot 1\,000\,000\,000 + 3\,\cdot 10\,000\,000 + 7\,\cdot 100\,000 + \\ + \, 2\,\cdot 10\,000 + 1\,\cdot 100 + 4\,\cdot 10 + 6\,\cdot 1. \end{array}$$

Записать число в виде суммы разрядных слагаемых:

- 1) 768;
- 2) 36 217;
- 3) 1148302;
- 4) 5000000249.

СРАВНЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Результат сравнения чисел записывают с помощью знаков: > (больше), < (меньше), = (равенства), получая таким образом неравенства или равенства.

- 15 > 2 означает, что число 15 больше числа 2;
- 27 < 39 означает, что число 27 меньше числа 39;
- 8 = 8 означает, что число 8 равно числу 8.

Важно знать!

- Число 0 меньше любого натурального числа.
- На координатном луче правее расположено число, которое больше.
- То, что число x находится правее числа a и левее числа b, можно записать с помощью двойного равенства: a < x < b (читают: x больше a и меньше b).

Например, 1 < 4 < 10; 7 < 21 < 30.

АЛГОРИТМ

Сравнить количество цифр в числах. Из двух натуральных чисел больше то, в записи которого цифр больше. Если числа содержат одинаковое количество цифр, то числа сравнивают поразрядно, начиная с самого старшего разряда.

2 Больше то число, в котором единиц старшего разряда больше (оставшиеся разряды не сравниваются).

Если единицы старшего разряда в числах одинаковые, то больше то число, в котором единиц следующего разряда больше. Если единицы этого разряда одинаковые, то сравниваем следующие разряды и т. д.

ПРИМЕР 1

Сравнить числа: 9783 и 895.

В первом числе количество цифр больше (четыре), чем во втором (три). Значит, 9783 > 985.

ПРИМЕР 2

Сравнить числа: 1385 и 1349.

- \bigcirc Количество цифр в данных числах одинаковое. Сравним цифры старшего разряда: 1 = 1.
- ② Сравним цифры следующего разряда: 3 = 3.
- Сравним цифры следующего разряда: 7 > 4.
 Значит, 1375 > 1349.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Сравнить числа:

1) 2719 и 189;

- 3) 564321 и 564370;
- **2)** 30 201 и 37 020;
- 4) 7308019 и 7309019.

ОКРУГЛЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Округление чисел — это замена числа его приближенным значением. Знак приблизительно равно: ≈.

Округление натуральных чисел

АЛГОРИТМ

Выделить разряд, до которого нужно округлить данное число. Обвести первую цифру справа от него.

Если обведенная цифра — это одна из цифр **0; 1; 2; 3; 4**, то цифра выделенного разряда не меняется, а все цифры справа от нее заменяются нулями (начиная с той, что обведена).

Если обведенная цифра — это одна из цифр **5; 6; 7; 8; 9**, то цифра выделенного разряда увеличивается на один, а все цифры справа от нее заменяются нулями (начиная с той, что обведена).

ПРИМЕР 1

Округлить число 72435 до тысяч.

Решение.

- \bigcirc Выделим разряд тысяч и обведем первую справа от него цифру 4: $72 \bigcirc 35$.
- \bigcirc Обведенная цифра 4, тогда $72 \bigcirc 35 \approx 72000$.

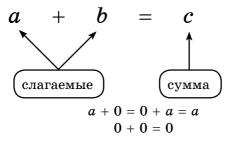
ПРИМЕР 2

Округлить число 36781 до сотен.

Решение.

- \bigcirc Выделим разряд сотен и обведем первую справа от него цифру 8: $367 \ \& 1$.
- \bigcirc Обведенная цифра 8, тогда $367 \bigcirc 1 \approx 36800$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО


- 1) Округлить число 763 до десятков.
- 2) Округлить число 25327 до тысяч.
- 3) Округлить число 3125793 до сотен тысяч.
- 4) Округлить число 62049008 до миллионов.

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД НАТУРАЛЬНЫМИ ЧИСЛАМИ

СЛОЖЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Компоненты действий

Результат действия

Законы сложения

a+b=b+a	переместительный
(a+b)+c=a+(b+c)	сочетательный

Полезно знать!

- Все законы сложения справедливы для любых натуральных чисел.
- Законы сложения помогают переставлять местами слагаемые, группировать их для более быстрого и удобного вычисления.

Сложение натуральных чисел

АЛГОРИТМ

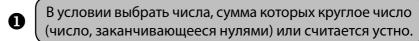
Записать числа в столбик так, чтобы первое число содержало большее количество разрядов и цифры одинаковых разрядов чисел были подписаны друг под другом справа налево.

Сложить цифры одинаковых разрядов справа налево. Если получится число меньше 10, то его записывают в этом же разряде полученной суммы; а если 10 или больше 10, то 1 десяток добавляют к единицам разряда слева, а оставшиеся единицы или нуль записывают в этом же разряде полученной суммы.

ПРИМЕР

Выполнить действие: 796 + 32405214.

Решение.


ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Выполнить действия:

Сложение натуральных чисел удобным способом

АЛГОРИТМ

С помощью законов сложения переставить и сгруппировать слагаемые для удобного и быстрого нахождения их суммы.

3 (Выполнить сложение.

ПРИМЕР

Вычислить удобным способом: 1150 + 30010 + 850 + 80090.

Решение.

① Легко сложить числа 1150 и 850; 30010 и 80090.

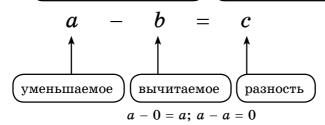
$$1150 + 30\ 010 + 850 + 80\ 090 =$$

 \bigcirc = (1150 + 850) + (30010 + 80090) = 2000 + 110100 = 112100.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить удобным способом:

1)
$$17 + 42 + 83 + 58$$
;


4)
$$1 + 12 + 23 + 34 + 45 + 56 + 67 + 78 + 89 + 90$$
.

ВЫЧИТАНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Компоненты действий

Результат действия

Важно знать!

- a > b, a > c
- a b = c, или a = b + c

Свойства вычитания

$$(a + b) - c = (a - c) + b = (b - c) + a$$

 $a - (b + c) = (a - b) - c = (a - c) - b$

Вычитание натуральных чисел

АЛГОРИТМ

Записать уменьшаемое и под ним вычитаемое в столбик так, чтобы разряды были записаны друг под другом справа налево.

2 Вычитать поразрядно, начиная с меньшего разряда — единиц.

ПРИМЕР

Выполнить действие:

Помни!

- Над разрядом, где занималась единица, ставят точку (чтобы не забыть, что цифра разряда стала на единицу меньше).
- Если точка стоит над нулем, то нужно отнимать от 9 единии.

Выполнить действия:

1) 742 - 27;

- **3)** 34475 27330;
- 2) 11340 5708;
- **4)** 578 103 493 129.

Вычитание натуральных чисел удобным способом

АЛГОРИТМ

В условии выбрать числа, разность которых быстро и удобно находится.

Записать условие примера в удобном порядке для вычисления, применяя свойства вычитания.

ПРИМЕР 1

Вычислить удобным способом: (413 + 114) - 113.

Решение.

- ① Удобно вычесть из 413 число 113.
- (2) (413 + 114) 113 = (413 113) + 114 = 300 + 114 = 414.

ПРИМЕР 2

Вычислить удобным способом: 518 - (118 + 300).

Решение.

- (1) Удобно найти разность чисел 518 и 118.
- (2) 518 (118 + 300) = (518 118) 300 = 400 300 = 100.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Найти значения выражений, выбирая удобный порядок вычисления:

- 1) (683 + 579) 279;
- 3) 1387 (150 + 387);
- **2)** 344 (144 + 117);
- **4)** (512 + 709) 312.

ЧИСЛОВЫЕ И БУКВЕННЫЕ ВЫРАЖЕНИЯ

Числовым выражением называется запись, составленная из чисел, знаков арифметических действий и скобок.

Значение числового выражения — это число, полученное в результате выполнения всех указанных действий в числовом выражении.

Буквенное выражение — запись, составленная из чисел, букв, знаков арифметических действий и скобок.

Значение буквенного выражения — это значение числового выражения, которое получается из буквенного при подстановке числа вместо буквы (значение буквы).

Нахождение значения буквенного выражения

АЛГОРИТМ

Подставить в буквенное выражение значение каждой

2 Выполнить все указанные действия в получившемся числовом выражении.

Записать ответ.

буквы.

Найти значение выражения: (125 + a) - 84, если a = 45.

Решение.

- (125 + 45) 84 =
- \bigcirc = 170 84 =
- (3) = 86.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Найти значения выражений:

- 1) (m-18)+46, если m=78;
- **2)** b 314 + 625 c, если b = 736, c = 432;
- 3) a + b + 224, если a = 376, b = 221;
- **4)** (n + 42): t 7, если n = 56, t = 14.

РЕШЕНИЕ ЗАДАЧ НА СЛОЖЕНИЕ И ВЫЧИТАНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Рассмотрим следующие типы задач:

- 1. Если даны несколько величин и нужно найти их сумму.
- 2. Если нужно найти бо́льшую величину, то задачи решаются сложением.
- 3. Если нужно найти слагаемое, а сумма и второе слагаемое известны.
- 4. Если нужно найти меньшую величину.
- 5. Если нужно найти, на сколько одна величина меньше другой, то задачи решаются вычитанием.

Решение задач на сложение и вычитание

АЛГОРИТМ

2 Найти неизвестные величины.

3 Ответ записать полностью.

ПРИМЕР

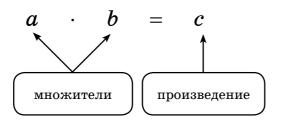
В парке растут 175 дубов, кленов — на 40 меньше, чем дубов, и на 12 больше, чем берез. Сколько всего деревьев в парке?

Решение.

- 1) 175 40 = 135 (кл.) клены;
- (2) 2) 135 12 = 123 (бер.) березы;
 - 3) 175 + 135 + 123 = 310 + 123 = 433 (д.) всего.
- Ответ: в парке растет всего 433 дерева.

Полезно знать!

• Если первая величина больше второй, то вторая на столько же меньше первой.


- 1) В июле корова Зорька дала 268 л молока, а в августе на 30 л меньше. Сколько всего литров молока дала Зорька за эти два месяца?
- 2) Дорогу из Светлого в Муромское построили за три месяца. За первый месяц построили часть дороги длиной 20 км, за второй на 7 км меньше, чем за первый. Всего за эти два месяца было построено на 6 км больше, чем за третий. Какое расстояние между Светлым и Муромским?
- 3) За три дня Винни-Пух съел 220 баночек меда. За первый день он съел 72 баночки, что на 16 баночек больше, чем за второй. Сколько баночек меда он съел за третий день?
- 4) В саду Оля выращивала цветы. Пионов и роз было 84, а остальные гладиолусы, причем гладиолусов было на 9 меньше, чем роз. Сколько цветов каждого вида вырастила Оля, если всего их было 130?

УМНОЖЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Компоненты действий

Результат действия

$$a \cdot 0 = 0 \cdot a = 0$$
; $a \cdot 1 = 1 \cdot a = a$

Законы умножения

$a \cdot b = b \cdot a$	переместительный
$(a\cdot b)\cdot c=a\cdot (b\cdot c)$	сочетательный
$(a+b)\cdot c=ac+bc$	<u>.</u>
$(a-b)\cdot c=ac-bc$	распределительный

Важно знать!

Умножение — действие II ступени. Его выполняют первым в примерах на сложение, вычитание, умножение.

Умножение натурального числа на 10, 100, 1000 и т. д.

АЛГОРИТМ

0

Посчитать количество нулей в множителе 10 (100; 1000; ...).

 Ω

2

Приписать к натуральному числу это количество нулей (справа).

ПРИМЕР

Выполнить действие: 128 · 1000.

Решение.

- В числе 1000 три нуля.
- (2) 128 000.

выполни самостоятельно

Выполнить действия:

1) 12 · 10;

3) 5080 · 10000;

2) 342 · 100;

4) 152 · 1000.

Упрощение выражений с помощью сочетательного закона умножения

АЛГОРИТМ

Переписать выражение так, чтобы вначале стояли числовые множители, а затем — буквенные.

Найти произведение числовых множителей и записать, дописать к этому результату буквы.

ПРИМЕР

Упростить выражение $12a \cdot 3b$.

- \bigcirc = 36ab.

выполни самостоятельно

Выполнить действия:

1) $7m \cdot 8$;

3) $10a \cdot 20bc$;

2) $15x \cdot 3 \cdot 10b$;

4) $2 \cdot 15xy$.

Помни!

- Знак умножения в записи произведения числа и буквы можно опускать: $7 \cdot a = 7a$.
- Множитель 1 всегда можно приписать к букве: m = 1m.

Преобразование выражений с помощью распределительного закона умножения

АЛГОРИТМ

Найти одинаковый множитель в данных произведениях, подчеркнуть его.

2 Вынести этот множитель за скобки, а в скобках записать неподчеркнутое.

3 Найти значение выражения в скобках, если оно числовое.

4 Выписать ответ.

ПРИМЕР 1

Найти значение выражения: $49 \cdot 15 + 51 \cdot 15$.

- $\bigcirc 1 \quad 49 \cdot \underline{15} + 51 \cdot \underline{15} =$

- (4) = 1500.

ПРИМЕР 2

Упростить выражение: 17a - a.

Решение.

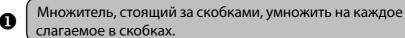
$$\bigcirc$$
 17*a* - *a* = 17*a* - 1*a* =

$$\bigcirc = a(17-1) =$$

$$(3) = a \cdot 16 =$$

$$\boxed{4} = 16a.$$

выполни самостоятельно


- 1. Найти значения выражений:
- 1) $103 \cdot 65 102 \cdot 65$;
- 2) $409 \cdot 93 + 409 \cdot 7$.
- 2. Упростить выражения:
- 1) 5y + 27y;

2) 90b - b.

Раскрытие скобок с помощью распределительного закона умножения

АЛГОРИТМ

Сложить (вычесть) полученные результаты.

ПРИМЕР 1

Раскрыть скобки: $6 \cdot (a - 8)$.

Решение.

$$(1) \quad \widehat{6 \cdot (a-8)} =$$

(2)
$$= 6 \cdot a - 6 \cdot 8 = 6a \cdot 48$$
.

ПРИМЕР 2

Раскрыть скобки: $(16 + b) \cdot 3$.

(16 + b)
$$\cdot$$
 3 =

Применить распределительное свойство умножения:

1) $(15-c)\cdot 4$;

3) 25(3-a);

2) 10(x+2);

4) 19(b+4).

ВОЗВЕДЕНИЕ НАТУРАЛЬНОГО ЧИСЛА В СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Возведение в степень — умножение одинаковых множителей.

$$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ pas}}$$

 a^n — n-ная степень числа a;

а — основание степени;

n — показатель степени;

$$a^2 = \underbrace{a \cdot a}_{2 \text{ раза}}$$
 — квадрат числа;

$$a^3 = \underbrace{a \cdot a \cdot a}_{3 \text{ раза}}$$
 — куб числа.

$$1^n = 1$$
; $a^1 = a$; $0^n = 0$

Вычисление степени числа

- АЛГОРИТМ
- **1** (Найти показатель степени n.

2 Умножить основание степени a на себя n раз.

3 (Записать результат умножения.

ПРИМЕР

Вычислить 5^4 .

- \bigcirc n=4
- (3) = 625.

выполни самостоятельно

Вычислить:

1) 2^3 ;

3) 7^2 ;

2) 3⁴;

4) 2⁵.

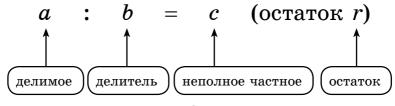
Помни!

- Возведение в степень это действие III ступени.
- При решении примеров на все действия возведение в степень выполняется первым.

Удобно пользоваться таблицей для нахождения квадратов и кубов чисел до 10.

а	1	2	3	4	5	6	7	8	9
a^2	1	4	9	16	25	36	49	64	81
a^3	1	8	27	64	125	216	343	512	729

ДЕЛЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ


Компоненты действий

Результат действия

a:1=a	0: a = 0	на о делить
a : a = 1	0:1=0	нельзя!

Деление с остатком

$$a = b : c + r$$

Помни!

- Если r=0, то число a делится на число b нацело.
- Остаток всегда меньше делителя (r < b).

Деление многозначных натуральных чисел с остатком

АЛГОРИТМ

Выполнить деление чисел в столбик.

Q

2 Остаток — последняя полученная разность при делении.

 \bigcirc

3 (Записать ответ.

ПРИМЕР

Выполнить деление с остатком 47:5.

Решение.

- \bigcirc 47:5 = 9 (oct. 2)
- Ответ: 9 (ост. 2)

Также можно записать: $47 = 5 \cdot 9 + 2$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

- 1) 548:9;
- 2) 145:100;
- 3) 156:7;
- 4) 1248:15.

Порядок выполнения действий

- сложение и вычитание действия I ступени;
- умножение и деление действия II ступени;
- возведение числа в степень действие III ступени.

АЛГОРИТМ

1 Выполнить возведение числа в степень (если оно есть в условии).

 \bigcirc

Выполнить действия в скобках, если они есть (учитывая, что первыми выполняются действия II ступени, а затем I в указанном порядке, как стоят в условии примера).

 \bigcirc

3 (Выполнить действия II ступени.

 \bigcirc

4 (Выполнить действия I ступени.

 \triangle

5 Записать ответ.

ПРИМЕР

Вычислить: $11^2 - (8^3 \cdot 2 - 800) : 7$.

Решение.

$$\bigcirc$$
 512 · 2 = 1024; 1024 - 800 = 224;

$$3 224:7=32;$$

$$\boxed{4} \quad 121 - 32 = 89.$$

⑤ Ответ: 89.

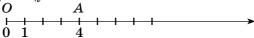
ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Найти значения выражений:

1)
$$7^2 + 3^2 \cdot 5$$
;

3)
$$(5^2 - 11) \cdot 10 + 487$$
;

2)
$$12 \cdot 4 - (47 - 43)^2$$
;


4)
$$20^2 + (169 : 13 + 7)^2$$
.

ИЗОБРАЖЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ НА ЧИСЛОВОМ ЛУЧЕ

Числовым (координатным) **лучом** называется луч с выбранными на нем направлением, началом отсчета и единичным отрезком.

Единичный отрезок — это отрезок, длина которого принимается за единицу.

A(4) — точка A с координатой 4.

Изображение натуральных чисел на числовом луче

19

АЛГОРИТМ

Построить числовой луч.

2 Отложить от точки O — начала луча — отрезки одинаковой длины (единичные отрезки).

3 Количество отрезков соответствует координате заданной точки. Отметить точку на числовом луче.

ПРИМЕР

Отметить точку B(5) на числовом луче.

Решение.

- ② O 1 2 3 4 5 6 7

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Отметить на числовом луче точки:

1) A(6);

3) N(2);

2) M(4);

4) E(1).

ДЕЛИМОСТЬ ЧИСЕЛ

2n, где $n=1,\ 2,\ 3,\ ...$ — формула четных чисел. 2n+1, где $n=1,\ 2,\ 3,\ ...$ — формула нечетных чисел.

Помни!

Все четные числа делятся на 2 без остатка.

ПРИЗНАКИ ДЕЛИМОСТИ ЧИСЕЛ

- 1) делится на 2, если последняя цифра числа четная или 0;
- 2) делится на 10, если последняя цифра числа 0;
- 3) делится на 5, если последняя цифра числа 5 или 0;
- 4) делится на 4 (25), если две последние цифры числа нули или составляют число, которое делится на 4 (25).

Признаки делимости чисел на 3 и 9

АЛГОРИТМ

Найти сумму цифр данного числа.

Разделить полученное число на 3 (9). Если делится без остатка, то данное число делится на 3 (9).

Помни!

Если число делится на 9, то оно делится и на 3.

ПРИМЕР

Делится ли данное число 21870 на 9?

Решение.

- (1) 2+1+8+7+0=18.
- (2) 18: 9 = 2 делится без остатка.

Ответ: число 21 870 делится на 9.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Какие из чисел 504, 735, 1002, 2037, 7012 делятся на 3?
- 2) Какие из чисел 405, 738, 2001, 7704, 333 делятся на 9?

РАЗЛОЖЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ НА ПРОСТЫЕ МНОЖИТЕЛИ

Простое число — натуральное число, которое имеет только два делителя: единицу и само это число.

Составное число — натуральное число, которое имеет больше двух делителей.

Например: 43 — простое число (делители 1 и 43); 12 — составное число (делители: 1, 12, 2, 6, 3, 4).

Помни!

- 1 не является ни простым, ни составным числом.
- 2 наименьшее простое число.

Взаимно простые числа — числа, у которых единственный общий делитель равен 1.

Разложить натуральное число на простые множители — значит записать его в виде произведения простых чисел.

Разложение натурального числа на простые множители

21

АЛГОРИТМ

- Записать данное число, провести справа от него вертикальную черту.
 - Q
- Справа от черты записать наименьший простой делитель числа, устно выполнить деление, частное записать под данным числом (слева от черты).
 - 勹
- С полученным частным поступить так же, как в пункте 2, продолжать деление до тех пор, пока не получится единица.
 - 勹
- Записать произведение всех простых чисел, стоящих справа от черты, чтобы получить разложение данного числа на простые множители.
 - \bigcirc
- **5** Ответ записать в виде произведения степеней простых множителей.

ПРИМЕР

Разложить на простые множители число 2835.

Решение.

$$(5) = 5 \cdot 7 \cdot 3^4$$
.

Omsem: $2835 = 5 \cdot 7 \cdot 3^4$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Разложить числа на простые множители:

1) 12;

3) 1100;

2) 36;

4) 20250.

ДЕЛИТЕЛИ ЧИСЛА

Делителем числа a называется такое число b, на которое a делится без остатка.

Помни!

- Наибольший делитель числа само это число.
- Наименьший делитель числа 1.
- Общий делитель чисел число, на которое делятся данные числа без остатка.
- НОД(a; b) наибольший общий делитель чисел a и b.

АЛГОРИТМ

Разложить каждое число на простые множители.

亇

2 Подчеркнуть в разложенных общие (одинаковые) множители.

 \bigcirc

3 Найти произведение общих множителей, выделенных в одном числе, — НОД данных чисел.

ПРИМЕР

Найти НОД(42; 48).

Решение.

- $\begin{array}{c|cccc}
 & 42 & 2 & 48 & 2 \\
 & 21 & 3 & 24 & 2 \\
 & & 7 & 12 & 2 \\
 & & 1 & 6 & 2 \\
 & & & 3 & 3 \\
 & & & 1 &
 \end{array}$
- \bigcirc НОД(42; 48) = $2 \cdot 3 = 6$.

Помни!

- Если одно число делится на другое, то меньшее и есть НОД данных чисел.
- Для более двух чисел НОД находится так же.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Найти НОД(30; 70).
- 2) Найти НОД(120; 160).
- 3) Найти НОД(26; 39; 52).
- 4) Дети получили на новогодней елке одинаковые подарки. Во всех подарках вместе было 123 апельсина и 82 яблока. Сколько детей было на празднике? Сколько апельсинов и сколько яблок было в каждом подарке?

KPATHOE

Кратным данного числа a называется такое число, которое само делится на a без остатка.

Общее кратное чисел — число, которое делится на каждое из данных чисел без остатка.

Помни!

- Наибольшего кратного не существует.
- Наименьшее кратное число это само число.
- HOK(a; b) наименьшее общее кратное чисел a и b.

Нахождение НОК нескольких чисел

АЛГОРИТМ

• Разложить данные числа на простые множители.

2 Подчеркнуть в разложениях общие множители.

Перемножить все множители одного числа (лучше большего) и домножить их на неподчеркнутые множители другого числа — найдем НОК данных чисел.

пример 1

Найти НОК(120; 180).

Решение.

Omsem: HOK(120; 180) = 360.

ПРИМЕР 2

Найти НОК(14; 28; 42).

Решение.

(3) $42 \cdot 2 = 84$

Omsem: HOK(14; 28; 42) = 84.

Важно помнить!

- Если числа взаимно простые, то их НОК равно произведению данных чисел.
- Если одно из данных чисел делится на второе, то большее и есть НОК этих чисел.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Найти НОК(6; 8).
- 2) Найти НОК(13; 7).
- 3) Найти наибольшее двузначное число, кратное числам 2 и 7.
- 4) Найти НОК(34; 51; 68).

РЕШЕНИЕ УРАВНЕНИЙ

Уравнение, корень уравнений

Уравнение — равенство, содержащее букву.

Корень уравнения — значение буквы, при подстановке которого в уравнение получается верное числовое равенство.

Решить уравнение — значит найти все его корни или показать, что корней нет.

Решение простейших уравнений (a и b — некоторые числа, x — буква):

- 1) x + a = b; x = b a; (b > a);
- 2) x a = b; x = b + a;
- 3) a x = b; x = a b (a > b);
- 4) $x \cdot a = b$; x = b : a (b > a);
- 5) x : a = b; $x = a \cdot b$;
- 6) a: x = b; x = a: b (a > b).

Важно знать!

Если левая часть уравнения содержит несколько действий, то оно сводится к решению простейших уравнений.

Решение уравнений

АЛГОРИТМ

Выполнить действия с числами, если они есть в уравнении.

口

Определить последнее действие в той части уравнения, куда входит буква (неизвестное). Выделить выражение с неизвестной.

Q

3 Решить полученное простейшее уравнение относительно выделенного выражения с неизвестной.

 \bigcirc

¶ Продолжать такие переходы до тех пор, пока не найдется неизвестное.

 \triangle

5 (Записать ответ.

Решить уравнение $(2x + 4) \cdot 20 - 75 = 46 - 1$.

Решение.

$$(2x+4)\cdot 20-75=46-1$$
; $(2x+4)\cdot 20-75=45$;

- ① $(2x + 4) \cdot 20 = 45 + 75; (2x + 4) \cdot 20 = 120;$ (2x + 4) = 120 : 20; 2x + 4 = 6; 2x = 6 4.
- (2) 2x = 2.
- (3) x = 1.
- (4) Omeem: 1.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Решить уравнения:

- 1) 77 (28 + y) = 37;
- 3) 46 + y : 5 = 85;

2) 6x + 40 = 70;

4) $49 + (136 - x \cdot 8) : 4 = 81$.

АЛГОРИТИ

Решение задач с помощью уравнений

Записать краткое условие задачи.

 $\overline{\Box}$

2 $\left(\begin{array}{c} 3a \ x \ \text{обозначить неизвестную величину (или меньшую из неизвестных величин).} \right)$

 \bigcirc

3 Выразить остальные величины через x.

 \bigcirc

Составить уравнение по условию задачи.

 \bigcirc

6 Решить это уравнение.

 \bigcirc

6 Найти искомую величину (ту, что спрашивается в задаче).

 \bigcirc

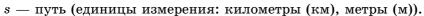
Записать полностью ответ.

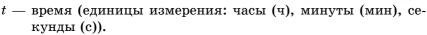
ПРИМЕР

На трех полках стоят 96 книг. На первой полке книг в 3 раза меньше, чем на второй, а на третьей полке — на 2 книги меньше, чем на второй. Сколько книг стоит на каждой полке? **Решение**.

- \bigcirc Пусть x книг стоит на I полке,
- \Im тогда 3x книг стоит на II полке, (3x-2) книги на III полке.
- Так как всего на трех полках стоит 96 книг, составим и решим уравнение: x + 3x + 3x 2 = 96.

- \bigcirc Ответ: на I полке стоит 14 книг, на II 42 книги, на III 40 книг.




ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Сумма двух чисел равна 278. Одно из них на 32 больше другого. Найти эти числа.
- 2) Туристы прошли за четыре дня 92 км, причем каждый следующий день они проходили на 2 км меньше, чем в предыдущий. Сколько километров туристы прошли в последний день?
- 3) Сын младше отца в 7 раз. Сколько лет отцу, если он старше сына на 24 года?
- 4) В двух выставочных залах 76 человек. Когда из первого зала ушли 30 человек, а из второго 40 человек, то людей в залах осталось поровну. По сколько человек было в залах сначала?

ЗАДАЧИ НА ДВИЖЕНИЕ

ЗАДАЧИ НА ДВИЖЕНИЕ

v — скорость (единицы измерения: километры в час (км/ч), метры в секунду (м/с), метры в минуту (м/мин)).

$$s = v \cdot t$$
; $v = s$; t ; $t = s$; v

Задачи на движение навстречу друг другу

АЛГОРИТМ

26

Если участники движения движутся навстречу друг другу, то скорость сближения v (т. е. скорость, с которой они приближаются друг к другу) равна сумме их скоростей: v = v + v

Дальше нужно решать задачу в зависимости от условия.

 $s = (v_1 + v_2) \cdot t$ (нахождение расстояния между пунктами отправления участников движения) *или*

 $t = s : (v_1 + v_2)$ (нахождение времени, которое были в пути участники движения до встречи).

ПРИМЕР

Два автомобиля выехали одновременно навстречу друг другу из двух городов, расстояние между которыми равно $435\,$ км, и встретились через $3\,$ часа. Найти скорость каждого автомобиля, если скорость первого из них на $5\,$ км/ч больше скорости второго.

Решение.

Составим краткую запись условия задачи в виде таблицы.

	Скорость, <i>v</i> (км/ч)	Время, <i>t</i> (ч)	Путь, <i>s</i> (км)
I автомобиль	? на 5 > —	3	$\left. ight\}$ 435
II автомобиль	?	3	433

1-й способ (арифметический)

- 1 435 : 3 = 145 (км/ч) скорость сближения;
- \bigcirc 145 5 = 140 (км/ч) сумма двух одинаковых скоростей;
- 3 140 : 2 = 70 (км/ч) скорость II автомобиля;
- \bigcirc 70 + 5 = 75 (км/ч) скорость I автомобиля.

2-й способ (алгебраический)

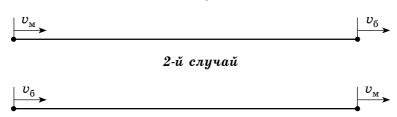
Пусть x км/ч — скорость II автомобиля, тогда (x + 5) км/ч — скорость I автомобиля.

- ① Скорость сближения: x + x + 5 = 2x + 5 (км/ч). Так как за 3 ч автомобили вместе прошли 435 км, составим и решим уравнение:
- $3(2x+5)=435;\ 2x+5=435:\ 3;\ 2x+5=145;$ (2) $2x=145-5;\ 2x=140;\ x=140:\ 2;\ x=70-\upsilon_{\text{II}}.$ При $x=70,\ x+5=70+5=75$ (км/ч) $\upsilon_{\text{I}}.$

Ответ: скорость I автомобиля — 75 км/ч, а скорость II автомобиля — 70 км/ч.

Важно помнить!

- в ... больше соответствует · (действию умножения)
- в ... меньше соответствует : (действию деления)
- на ... больше соответствует + (действию сложения)
- **на ... меньше** соответствует (действию вычитания)


ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Два автобуса выехали одновременно из двух городов навстречу друг другу и встретились через 5 часов. Скорость первого автобуса 63 км/ч, а второго 67 км/ч. Какое расстояние между городами?
- 2) Расстояние между двумя населенными пунктами равно 260 км. Два автомобиля выехали одновременно навстречу друг другу из этих пунктов и встретились через 2 часа. Найти скорость каждого автомобиля, если скорость одного из них на 10 км/ч больше скорости другого.
- 3) Одновременно навстречу друг другу из двух городов, расстояние между которыми равно 556 км, выехали два автомобиля и встретились через 4 часа после начала движения. Скорость одного из них равна 67 км/ч. Найти скорость второго автомобиля.
- 4) Мотоциклист и велосипедист выехали одновременно из двух городов навстречу друг другу. Скорость мотоциклиста равна 74 км/ч, а велосипедиста 18 км/ч. Через сколько часов они встретятся, если расстояние между городами 184 км?

АЛГОРИТМ

Рассмотрим два случая:

1-й случай

 $v_{_{\rm M}}$ — ме́ньшая скорость; $v_{\rm G}$ — бо́льшая скорость

В зависимости от условия задачи используются следующие формулы:

Скорость удаления (случай 1) или скорость сближения (случай 2):

$$v = v_6 - v_M$$
.

или

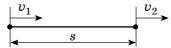
Расстояние, на которое объекты удаляются друг от друга (случай 1) или приближаются друг к другу (случай 2): $s = v \cdot t$.

или

3 Время удаления (случай 1) или сближения (случай 2): t = s : v.

Важно помнить!

(1)	(2)
$v_{\text{удаления}} = v_6 - v_{\text{м}}$	$v_{ m cближения} = v_{ m f} - v_{ m m}$
$v_6 = v_{\text{удаления}} + v_{\text{м}}$	$v_{\rm G} = v_{\rm cближения} + v_{\rm m}$
$v_{\rm M} = v_{\rm G} - v_{\rm удаления}$	$v_{\rm m} = v_{\rm 6} - v_{\rm cближения}$

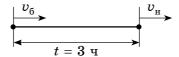

Важно помнить!

Количество шагов алгоритма зависит от того, какую величину нужно найти в условии задачи.

Полезный совет!

При одновременном движении объектов в одном направлении из разных пунктов:

1) расстояние между объектами постоянно, если их скорости равны;



- 2) расстояние между объектами уменьшается, если $v_1 > v_2$ (т. е. объекты сближаются);
- 3) расстояние между объектами увеличивается, если $v_1 < v_2$ (т. е. объекты $y \partial aляются$).

ПРИМЕР

В одном направлении из двух различных населенных пунктов выехали одновременно два велосипедиста. Скорость первого — $12 \, \text{км/ч}$, а скорость второго — $14 \, \text{км/ч}$. Найти расстояние, если второй велосипедист догонит первого через $3 \, \text{ч}$.

Решение.

- ① $14 12 = 2 (\kappa M/\Psi) v_{VNAN};$
- $2 \cdot 3 = 6$ (км) искомое расстояние.

Ответ: расстояние между населенными пунктами — 6 км.

- 1) Из двух городов, расстояние между которыми равно 32 км, одновременно в одном направлении вышли два поезда. Позади шел поезд со скоростью 62 км/ч, который через 4 ч после начала движения догнал второй поезд, который шел впереди. Найти скорость поезда, шедшего впереди.
- 2) Расстояние между двумя пристанями равно 20 км. От этих пристаней одновременно в одном направлении отплыли два катера. Первый двигался со скоростью 14 км/ч, а второй, шедший позади, двигался со скоростью 18 км/ч. Через сколько часов после начала движения вторая лодка догонит первую?
- 3) Из двух городов, расстояние между которыми 56 км, одновременно в одном направлении выехали два автомобиля. Автомобиль, ехавший позади, двигался со скоростью 70 км/ч, а второй со скоростью 56 км/ч. Через сколько

4) От пристани A отошел теплоход со скоростью 22 км/ч. Одновременно с ним в том же направлении от пристани B отошел другой теплоход. Через 3 ч первый теплоход догнал второй. Найти скорость второго теплохода, если расстояние между пристанями равно 15 км.

Решение задач на движение в противоположных направлениях

АЛГОРИТМ

 $lue{1}$ Скорость удаления объектов друг от друга: $v_{\rm удал} = v_1 + v_2$.

или

или

или

4 Нахождение времени движения объектов: $t = s : v_{y,q,a,n}$.

Важно помнить!

Количество шагов алгоритма зависит от того, какую величину нужно найти в условии задачи.

ПРИМЕР

Два автомобиля выехали одновременно из пункта A в противоположных направлениях. Скорость первого автомобиля равна 75 км/ч, а второго — 85 км/ч. На каком расстоянии друг от друга будут находиться автомобили через 2 часа после выезда?

Решение.

- \bigcirc 75 + 65 = 140 (км/ч) $v_{\text{удал}}$;
- (2) 140 · 2 = 280 (км) искомое расстояние.

Ответ: через 2 ч после выезда между автомобилями будет 280 км.

- 1) Два автобуса одновременно и в противоположных направлениях выехали из населенных пунктов, расстояние между которыми составляет 40 км. Первый автобус ехал со скоростью 60 км/ч, а второй со скоростью на 15 км/ч большей, чем первый. На каком расстоянии друг от друга будут находиться автобусы через 3 ч после начала движения?
- 2) С одной станции в противоположных направлениях одновременно вышли два поезда. Один двигался со скоростью 63 км/ч, а второй 58 км/ч. Каким будет расстояние между ними через 7 ч после начала движения?
- 3) Из одного города в противоположных направлениях одновременно выехали два автомобиля. Скорость первого равна 74 км/ч. Какая скорость у второго автомобиля, если через 3 часа после начала движения расстояние между автомобилями стало 408 км?
- 4) Из двух городов одновременно в противоположных направлениях выехали два велосипедиста: один со скоростью 18 км/ч, а второй 15 км/ч. Через какое время расстояние между велосипедистами будет 91 км, если расстояние между городами равно 25 км?

Важно помнить!

 $v_{\rm c}$ — собственная скорость (скорость в стоячей воде);

 $v_{\rm p}$ — скорость течения реки;

 $v_{\text{по теч}}$ — скорость по течению реки;

 $v_{\text{против теч}}$ — скорость против течения реки

Важно помнить!

В решении задач на движение по реке используются те пункты алгоритма, в которых описано нахождение неизвестной величины (по условию задачи).

Нахождение скорости по течению реки:

$$V_{\text{по теч}} = V_{\text{c}} + V_{\text{p}}.$$

или

Нахождение скорости против речения реки:

$$V_{\text{против теч}} = V_{\text{c}} - V_{\text{p}}$$
.

или

Нахождение скорости в стоячей воде (скорости плота):

$$V_{\text{плота}} = V_{\text{p}}$$
.

или

Нахождение скорости собственной, если известны скорости по течению реки и против течения:

$$v_{c} = (v_{\text{по теч}} + v_{\text{против теч}}) : 2.$$

или

Нахождение пройденного пути или времени:

$$s = v \cdot t$$
; $t = s : v$.

Помни!

$$v_{\text{против теч}} = v_{\text{по теч}} - 2v_{\text{p}}$$
.

ПРИМЕР

Катер прошел 54 км по течению реки и потратил на это 3 ч. Найти скорость течения реки, если собственная скорость катера 16 км/ч.

Решение.

	υ	t	s	
По течению	16 + ?	3 ч	54 км	

1-й способ (арифметический)

- 54: 3 = 18 (км/ч) скорость по течению;
- \bigcirc 18 16 = 2 (км/ч) скорость течения реки.

2-й способ (алгебраический)

- \bigcirc Пусть x км/ч скорость течения реки, тогда (16 + x) км/ч скорость катера по течению. Так как за 3 часа катер по течению прошел 54 км,
- \bigcirc составим и решим уравнение: $3 \cdot (16 + x) = 54$; 16 + x = 54 : 3; 16 + x = 18; x = 18 16; x = 2.

Ответ: скорость течения реки равна 2 км/ч.

- 1) Расстояние между двумя пристанями 64 км. Скорость течения реки 4 км/ч. Собственная скорость катера равна 12 км/ч. За какое время катер пройдет от одной пристани до другой по течению реки?
- 2) Расстояние между двумя пристанями 64 км. Собственная скорость катера равна 12 км/ч. За какое время катер пройдет расстояние между пристанями против течения реки, если скорость течения реки 4 км/ч?
- 3) Катер курсирует между двумя городами по реке, скорость течения которой равна 6 км/ч. Какое время затратит катет на один рейс туда и обратно, если его собственная скорость 18 км/ч, а расстояние между пристанями 48 км?
- 4) Моторная лодка преодолевает расстояние 72 км по течению реки за 6 ч, а против течения за 9 ч. Найти скорость течения реки и собственную скорость лодки.

ОБЫКНОВЕННЫЕ ДРОБИ

4 числитель дроби
ф дробная черта
знаменатель дроби

Знаменатель дроби показывает, на сколько равных частей разделили величину, а **числитель** — сколько таких частей взяли.

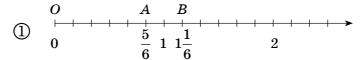
Помни!				
a = 1	$egin{aligned} rac{a}{b} & — правильная дробь, \ если a < b \end{aligned}$			
$egin{aligned} rac{a}{b} & — ext{ неправильная дробь,} \ & \\ ext{если } a > b ext{ или } a = b \end{aligned}$	$Arac{a}{b}$ — смешанная дробь, где A — целая часть, $rac{a}{b}$ — дробная часть			

Изображение обыкновенной дроби на координатном луче

АЛГОРИТМ

Начертить координатный (числовой) луч, выбрать на нем единичный отрезок так, чтобы его удобно было делить на *b* равных частей, где *b* — знаменатель дроби.

На луче от 0 отложить *а* таких частей, где *а* — числитель дроби, поставить точку, изображающую заданную дробь.


Если дробь смешанная, то на координатном луче вначале нужно отложить ее целую часть. Отрезок, следующий за отмеченной точкой, разделить на b равных частей, отложить правильную дробь $\frac{a}{b}$, равную дробной части. Отметить полученную точку, изображающую данную смешанную дробь.

ПРИМЕР

Отметить на координатном луче точки, изображающие числа $\frac{5}{6}$ и $1\frac{1}{6}$.

Решение.

- Разделим единичные отрезки на 6 равных частей, так как знаменатели дробей 6, отложим от начала отсчета O 5 таких частей, получили точку A;
- \bigcirc и после 1 1 такую часть, получили точку B.

выполни самостоятельно

Отметить на координатном луче числа:

1) $\frac{7}{10}$;

3) $1\frac{1}{2}$;

2) $\frac{3}{4}$;

4) $3\frac{2}{3}$.

Нахождение дроби от числа

АЛГОРИТМ

Найти $\frac{m}{n}$ от числа A.

- lacktriangle Данное число A разделить на n знаменатель дроби.
- Полученный результат умножить на числитель дроби.

Записать ответ.

ПРИМЕР 1

Маша планировала выполнить домашнее задание за 60 мин, а затратила $\frac{7}{10}$ этого времени. За сколько минут Маша выполнила домашнее задание?

Решение.

- ① 60:10=6 (мин) 1-я часть;
- \bigcirc 6 · 7 = 42 (мин) 7 частей.
- **Ответ:** Маша выполнила домашнее задание за 42 минуты.

ПРИМЕР 2

Найти $\frac{11}{17}$ от 51.

Решение.

- $\bigcirc 51:17=3;$
- (2) 3 · 11 = 33.
- (3) Omeem: 33.

выполни самостоятельно

- 1. Чему равна градусная мера угла, составляющего $\frac{7}{9}$ развернутого угла?
- **2.** Масса дыни 6 кг. Сколько килограммов составляют $\frac{2}{3}$ дыни?
- 3. Туристы прошли 32 км. В первый день они прошли $\frac{3}{8}$ все-

го пути, а во второй — $\frac{2}{3}$ пути, пройденного в первый день.

Оставшийся путь они преодолели за третий день. Сколько километров прошли туристы за третий день?

4. Из ящика массой 35 кг отсыпали $\frac{3}{5}$ конфет, а остальное разделили поровну между 7 покупателями. Сколько килограммов конфет купил каждый покупатель?

Найти число B, если $\frac{m}{n}$ его составляют c.

 $oldsymbol{1}$ Данное число c разделить на m — числитель дроби.

叴

2 Полученный результат умножить на n — знаменатель дроби.

亽

3 (Записать ответ.

ПРИМЕР

Иван решил 30 примеров, что составляет $\frac{6}{7}$ всего задания.

Сколько примеров нужно было решить Ивану? Решение.

- ① 30:6=5 (примеров) составляет $\frac{1}{7}$ всего задания;
- (2) 5 · 7 = 35 (примеров) все задание.
- (3) Ответ: Ивану нужно было решить 35 примеров.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Найти число, если $\frac{3}{7}$ его равны 9.
- **2)** Чему равен угол, если $\frac{5}{4}$ его равны прямому углу?
- 3) На экскурсию по городу собралось 22 ученика, что составляет $\frac{11}{15}$ всего класса. Сколько учеников в классе?
- 4) В пекарне испекли 120 булочек со сливами, что составляет $\frac{6}{5}$ булочек со смородиной. Каких булочек испекли мень-

ше и на сколько?

0

Определить по условию задания, к какому правилу сравнения обыкновенных дробей относится данный пример.

Сравнить дроби, используя правила:

1)
$$\frac{a}{a} = 1$$
;

2)
$$\frac{a}{b} > 1$$
, если $a > b$;

3)
$$\frac{a}{b}$$
 < 1, если $a < b$;

4) любая правильная дробь меньше любой неправильной;

5) $\frac{a}{b} > \frac{c}{b}$, если a > c (из двух дробей с одинаковыми зна-

менателями больше та, числитель которой больше);

6) $\frac{a}{b} < \frac{a}{c}$, если b > c (из двух дробей с одинаковыми чи-

слителями больше та, знаменатель которой меньше);

7) если числители и знаменатели дробей различны, то дроби приводят к общему знаменателю и сравнивают как дроби с одинаковыми знаменателями.

ПРИМЕР

Сравнить дроби:

1) $\frac{5}{7}$ и $\frac{3}{2}$;

4) $\frac{6}{7}$ u $\frac{3}{7}$;

2) $\frac{11}{9}$ и 1;

5) $\frac{10}{13}$ и 1;

3) $\frac{17}{17}$ II $\frac{5}{5}$;

6) $\frac{9}{5}$ II $\frac{9}{11}$.

Решение.

② $\frac{11}{9}$ — неправильная дробь, $\frac{11}{9} > 1$;

$$3 \frac{17}{17} = 1; \frac{5}{5} = 1; 1 = 1;$$

 \bigcirc $\frac{10}{13}$ — правильная дробь, $\frac{10}{13}$ < 1;

 $igoplus rac{6}{7}$ и $rac{3}{7}$ — дроби с одинаковыми знаменателями; $rac{6}{7} > rac{3}{7}$, так как 6 > 3;

выполни самостоятельно

1) Сравнить дроби:

a)
$$\frac{42}{42}$$
 и 1;

r)
$$\frac{17}{10}$$
 u $\frac{16}{10}$;

б)
$$\frac{40}{40}$$
 и $\frac{29}{30}$;

д)
$$\frac{1}{2}$$
 и $\frac{1}{3}$;

в)
$$\frac{5}{4}$$
 и 1;

e)
$$\frac{15}{16}$$
 u $\frac{7}{6}$.

2) Расположить дроби в порядке возрастания:

$$\frac{9}{19}$$
, $\frac{7}{19}$, $\frac{5}{19}$, $\frac{1}{19}$, $\frac{19}{19}$, $\frac{6}{19}$, $\frac{12}{19}$

3) Записать наибольшую правильную дробь со знаменателем 20.

4) При каком значении x дробь $\frac{x}{8}$ меньше $\frac{7}{8}$ и больше $\frac{5}{8}$?

Числитель данной дроби разделить на знаменатель.

 \bigcirc

2 Частное записать как целую часть искомой смешанной дроби.

ひ

3 В знаменатель дробной части записать знаменатель данной дроби.

 \bigcirc

В числитель дробной части записать остаток от деления.

ПРИМЕР

Выделить целую часть в неправильной дроби $\frac{17}{5}$. **Решение**.

- ① $-\frac{17 | 5}{15 | 3}$ $-\frac{2 \text{ (остаток)}}{2 \text{ (остаток)}}$
- (2) 3 целая часть смешанной дроби;
- (3) 5 знаменатель дробной части;
- 4 2 числитель дробной части.

Omsem: $\frac{17}{5} = 3\frac{2}{5}$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Записать неправильные дроби в виде смешанного числа:
 - a) $\frac{111}{15}$;

- 6) $\frac{123}{4}$;
- 2) Выделить целую часть в неправильных дробях:
 - a) $\frac{146}{26}$;

6) $\frac{157}{9}$.

Целую часть умножить на знаменатель дробной части.

 \bigcirc

2 К полученному произведению добавить числитель дробной части.

Q

3 Результат суммы записать в числитель искомой неправильной дроби.

 \bigcirc

В знаменатель искомой дроби записать знаменатель дробной части.

ПРИМЕР

Обратить в неправильную дробь число $7\frac{5}{6}$.

Решение.

- (1) $7 \cdot 6 = 42;$
- (2) 42 + 5 = 47;
- (3) 47 числитель неправильной дроби;
- 4 6 знаменталь неправильной дроби.

Ответ: $7\frac{5}{6} = \frac{47}{6}$ или $7\frac{5}{6} = \frac{7 \cdot 6 + 5}{6} = \frac{47}{6}$.

выполни самостоятельно

Записать в виде неправильной дроби смешанные числа:

1) $7\frac{2}{3}$;

3) $32\frac{4}{5}$;

2) $5\frac{1}{6}$;

4) $11\frac{7}{8}$.

Сложение и вычитание дробей с одинаковыми знаменателями

АЛГОРИТМ

Общий знаменатель записать в знаменателе суммы (разности).

Числители дробей сложить (вычесть) и результат записать в числителе суммы (разности):

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}, \qquad \frac{a}{b} - \frac{c}{b} = \frac{a-c}{b}$$

ПРИМЕР

Вычислить:

1)
$$\frac{13}{56} + \frac{17}{56}$$
; 2) $\frac{45}{81} - \frac{11}{81}$.

Решение.

1)
$$\frac{13}{56} + \frac{17}{56} = \frac{13 + 17}{56} = \frac{30}{56}$$
.

2)
$$\frac{45}{81} - \frac{11}{81} = \frac{45 - 11}{81} = \frac{34}{81}$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Записать в виде неправильной дроби смешанные числа:

- 1) Сложить дроби: $\frac{23}{55} + \frac{34}{55}$.
- **2)** Вычесть дроби: $\frac{47}{96} \frac{15}{96}$
- 3) Решить уравнение: $\frac{34}{89} + \frac{x}{89} = \frac{75}{89}$.
- **4)** Вычислить: $\frac{35}{57} \frac{17}{57} + \frac{45}{57}$.

Помни!

- Если при сложении дробей с одинаковыми знаменателями получили неправильную дробь, то в ней нужно выделить целую и дробную части, представив ответ в виде смешанного числа.
- Если у двух дробей с одинаковыми знаменателями равны и числители, то разность таких дробей равна нулю.

Вычитание правильной дроби из натурального числа

АЛГОРИТМ

• Если правильная дробь вычитается из 1, то 1 представляется в виде дроби, числитель и знаменатель которой равны знаменателю данной дроби.

Если правильная дробь вычитается из натурального числа, отличного от 1, то натуральное число представляется в виде смешанного числа, целая часть которого на 1 меньше данного натурального числа, а дробная является дробью, числитель и знаменатель которой равны знаменателю вычитаемой дроби (или натуральное число можно представить в виде неправильной дроби, знаменатель которой равен знаменателю вычитаемой дроби).

Выполнить вычитание дробей с одинаковыми знаменателями, целую часть приписать к полученному результату (или вычесть дроби с одинаковыми знаменателями).

4 Если в решении получили неправильную дробь, то нужно представить ее в виде смешанного числа.

ПРИМЕР

Вычислить:

1)
$$1-\frac{8}{11}$$
;

2)
$$4-\frac{2}{3}$$
.

Решение.

1)
$$1 - \frac{8}{11} = \frac{11}{11} - \frac{8}{11} = \frac{11 - 8}{11} = \frac{3}{11}$$
.

$$2) \quad 4 - \frac{2}{3} = (3+1) - \frac{2}{3} = 3\frac{3}{3} - \frac{2}{3} = 3\frac{3-2}{3} = 3\frac{1}{3}$$
 или
$$4 - \frac{2}{3} = \frac{12}{3} - \frac{2}{3} = \frac{12-2}{3} = \frac{12-2}{3} = \frac{10}{3} = 3\frac{1}{3}.$$

Помни!

• Разность числа 1 и правильной дроби является дробью, дополняющей данную дробь до 1.

• Разностью натурального числа больше 1 и правильной дроби является смешанное число, целая часть которого на 1 меньше данного числа, а дробная часть дополняет данную дробь до 1.

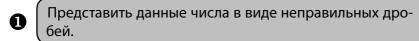
ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1)
$$1-\frac{4}{45}$$
;

3)
$$5-\frac{3}{7}$$
;

2)
$$1-\frac{16}{39}$$
;


4)
$$10-\frac{4}{9}$$
.

Вычитание правильной дроби из натурального числа

АЛГОРИТМ

1-й способ

2 Сложить (вычесть) полученные дроби с одинаковыми знаменателями.

3 В полученном результате выделить целую и дробную части.

2-й способ

Отдельно сложить (вычесть) целые и дробные части.

Если при сложении в дробной части получилась неправильная дробь, то из нее выделяют целую часть и добавляют к уже имеющейся целой части.

Если при вычитании дробная часть уменьшаемого меньше дробной части вычитаемого, то у целой части уменьшаемого занимают 1 и к числителю дробной части уменьшаемого добавляют ее знаменатель, затем выполняют вычитание смешанного числа (пункт 1).

ПРИМЕР 1

Вычислить: $3\frac{11}{17} + 5\frac{9}{17}$.

Решение (1-й способ).

$$3 = 9\frac{3}{17}$$
.

Решение (2-й способ).

$$= 8 + \frac{20}{17} =$$

ПРИМЕР 2

Вычислить: $7\frac{2}{9} - 3\frac{5}{9}$.

Решение (1-й способ).

$$3 = 3\frac{6}{9}$$
.

Решение (2-й способ).

2 =
$$6\frac{9+2}{9} - 3\frac{5}{9} = 6\frac{11}{9} - 3\frac{5}{9} =$$

$$(3) = (6-3) + \left(\frac{11}{9} - \frac{5}{9}\right) = 3 + \frac{11-5}{9} = 3 + \frac{6}{9} = 3\frac{6}{9}.$$

Помни!

- Если одно из слагаемых натуральное число, а второе смешанное число, то складываются только целые части, дробная часть приписывается к полученной сумме.
- Если из смешанного числа вычитается натуральное число, то вычитаем его только из целой части уменьшаемого, дробная часть которого приписывается к полученной разности.

Например:

$$\begin{aligned} &7\,\frac{9}{11} + 3 = (7+3) + \frac{9}{11} = 10 + \frac{9}{11} = 10\,\frac{9}{11};\\ &24 + 26\,\frac{7}{9} = (24+26) + \frac{7}{9} = 50 + \frac{7}{9} = 50\,\frac{7}{9};\\ &38\,\frac{11}{19} - 27 = (38-27) + \frac{11}{19} = 11 + \frac{11}{19} = 11\,\frac{11}{19};\\ &65\,\frac{4}{15} - 65 = (65-65) + \frac{4}{15} = 0 + \frac{4}{15} = \frac{4}{15}.\end{aligned}$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1)
$$15\frac{3}{4} + 10\frac{3}{4}$$
;

3)
$$8\frac{15}{19} - 4$$
;

2)
$$7\frac{11}{12} + 9$$
;

4)
$$6\frac{4}{7} + 4\frac{6}{7}$$
.

ДЕСЯТИЧНЫЕ ДРОБИ

Десятичные дроби — дроби, знаменатели которых равны 10, 100, 1000 и т. д.

Помни!

- Целая часть отделяется от дробной запятой.
- Если дробь правильная, то перед запятой пишут 0, после запятой числитель дробной части.
- После запятой должно стоять столько цифр, сколько нулей в знаменателе.
- Если разряд справа от запятой не содержит единиц, то на его месте пишут 0.
- Название разрядов справа от запятой:

сотни	десятки	единицы	десятые	corsie	тысячные	десяти- тысячные	сто- тысячные	миллион- ные	211
ပ	ュ	e	ュ	ပ	H	7 1	ပ E	_≥; ∓	ì

Чтение десятичных дробей

АЛГОРИТМ

Назвать целую часть десятичной дроби — это 0 или натуральное число, которое записано слева от запятой.

Назвать число, стоящее справа от запятой.

Определить название низшего разряда дробной части числа и добавить к сказанному.

ПРИМЕР

Прочитать дробь 102,018.

Решение.

- (1) сто две целых
- 2 восемнадцать
- (3) тысячных.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Прочитать десятичные дроби:

1) 3,8;

3) 0,49;

2) 302,17;

4) 15,0025.

Запись обыкновенной дроби со знаменателем 10, 100, 1000 и т. д. в виде десятичной дроби

АЛГОРИТМ

Записать 0, если дробь правильная, или натуральное число, являющееся целой частью данного смешанного числа, поставить запятую.

2 Справа от запятой отделить столько десятичных знаков, сколько нулей в знаменателе обыкновенной дроби.

Записать числитель дроби справа налево в отделенные знаки (справа от запятой). Если цифр меньше, чем десятичных знаков, то нужно дописать нули слева к числителю.

ПРИМЕР

Записать в виде десятичной дроби дробь $2\frac{17}{10000}$.

Решение.

$$2\frac{17}{10000} = 2,0017.$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Записать в виде десятичной дроби:

1) $\frac{3}{10}$;

3) $10\frac{2}{10000}$

2) $2\frac{17}{100}$;

4) $\frac{127}{100000}$

Запись обыкновенной дроби в виде десятичной

АЛГОРИТМ

Разделить числитель дроби на знаменатель.

Помни!

Такое деление будет выполнено без остатка всегда, когда знаменатель дроби является 2 или 5, или их степенями, или произведениями их степеней.

ПРИМЕР

Записать в виде десятичной дроби: $3\frac{4}{125}$.

Решение.

$$\begin{array}{c|c}
-\frac{4,00}{375} & 125 \\
\hline
0,032 & \\
\hline
-\frac{250}{250} & 3\frac{4}{125} = 3,032.
\end{array}$$

Важно знать!

•
$$\frac{1}{2} = 0.5$$

•
$$\frac{1}{5} = 0,2$$

•
$$\frac{2}{5} = 0.4$$

•
$$\frac{3}{5} = 0.6$$

•
$$\frac{4}{5} = 0.8$$

•
$$\frac{1}{8} = 0,125$$

•
$$\frac{3}{4} = 0.75$$

•
$$\frac{1}{50} = 0.02$$

•
$$\frac{1}{25} = 0.04$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Представить в виде десятичной дроби числа:

1)
$$3\frac{4}{25}$$
;

3)
$$\frac{7}{8}$$
;

2)
$$5\frac{3}{4}$$
;

4)
$$\frac{16}{40}$$
.

Разделить числитель на знаменатель обыкновенной дроби. Получается повторяющийся остаток.

Повторяющийся остаток (период дроби) записать в круглых скобках. Получена таким образом десятичная бесконечная периодическая дробь.

ПРИМЕР

Записать в виде бесконечной периодической десятичной дроби дробь $\frac{10}{7}$.

Решение.

$$\begin{array}{c|c}
\boxed{1} & -\frac{10}{7} \\
-\frac{7}{30} \\
-\frac{28}{20} \\
-\frac{14}{60} \\
-\frac{56}{40} \\
-\frac{35}{50} \\
-\frac{49}{10} \\
-\frac{7}{30} \\
-\frac{28}{20} \\
-\frac{2$$

②
$$\frac{10}{7} = 1,428571428571... = 1,(428571).$$

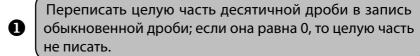
Читают: одна целая 428 тысяч 571 миллионная в периоде.

выполни самостоятельно

Записать в виде бесконечной периодической десятичной дроби числа:

1) $\frac{1}{3}$;

3) $\frac{2}{9}$;


2) $\frac{1}{6}$;

4) $\frac{8}{15}$.

Запись десятичной дроби в виде обыкновенной

АЛГОРИТМ

2 В числитель дроби записать числа, стоящие после запятой (нули перед ними не писать).

В знаменатель дроби записать 1 с таким количеством нулей, сколько знаков стоит после запятой в записи десятичной дроби.

ПРИМЕР

Записать в виде обыкновенной дроби десятичную дробь 18.0039.

Решение.

①②③ 18,0039 =
$$18\frac{39}{10000}$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Записать в виде обыкновенной дроби:

1) 0,112;

3) 10,02;

2) 3,5;

4) 0,0504.

Важно знать!

Последние нули справа после запятой в записи десятичной дроби можно отбрасывать: 0,500 = 0,5; 2,0370 = 2,037.

Выделить разряд, до которого выполняется округление.

亽

Если дробь округляется до разряда из целой части, то применяется правило округления натуральных чисел, за округленным разрядом пишутся нули в целой части до запятой, а все заряды после запятой отбрасываются.

или

Если дробь округляется до разряда в дробной части, то выделяется этот разряд, все, что слева от него, переписывается и оценивается первая справа от него цифра:

- а) если она 5; 6; 7; 8; 9, то к единицам этого разряда добавляется 1, а остальные за ним цифры отбрасываются;
 - 6) если она 0; 1; 2; 3; 4, то выделенная единица разряда не меняется, а все цифры за ней отбрасываются.

ПРИМЕР

Округлить дробь 283,1478 до:

1) десятков; 2) десятых; 3) тысячных.

Решение.

1

8

- 1) $283,1478 \approx 280;$
- (<u>1</u>)
- 2) $283,1478 \approx 283,1$;
- 3
- 3) $283,1478 \approx 283,148$.
- (3)

- 1) Округлить до единиц 15,92.
- 2) Округлить до десятых 3,703.
- 3) Округлить до тысячных 0,0175.
- **4)** Округлить до сотых 9,896.

Уравнять у дробей число десятичных знаков, приписав к одной из них справа нули.

 \bigcirc

2 Отбросить запятую и сравнить полученные натуральные числа.

 \bigcirc

Записать ответы.

ПРИМЕР

Сравнить дроби: 3,072 и 3,08.

Решение.

- (1) 3,08 = 3,080.
- (2) 3072 < 3080.
- (3) Omsem: 3,072 < 3,08.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Сравнить дроби: 1) 74,08 и 68,77; 2) 0,5 и 0,572.
- **2)** Расположить числа в порядке убывания: 0,083; 0,036; 0,0055; 0,09; 0,0072.
- 3) Между какими соседними натуральными числами находится число 11,39?

Помни!

Десятичные дроби можно сравнивать по разрядам.

 Уравнять количество знаков после запятой в данных дробях (дописав нули к одной из дробей).

亽

2 Записать дроби друг под другом так, чтобы запятая была под запятой.

亇

3 Выполнить сложение (вычитание) в столбик, не обращая внимания на запятую.

仝

4 (Поставить в ответе запятую под запятой.

ПРИМЕР

Вычислить:

- **1)** 84,273 + 3,329;
- 2) 5.6 3.66.

Решение.

- 1) От куска провода длиной 40 м отрезали 5,85 м. Сколько метров провода осталось в куске?
- 2) С одного участка собрали 86,29 т зерна, а с другого на 17,6 т больше. Сколько тонн зерна собрали с двух участков вместе?
- 3) Выполнить действие: 9,1 6,54.
- **4)** Решить уравнение: (6.5 x) + 2.7 = 5.5.

Посчитать количество нулей в числе 10, 100, 1000,

 \bigcirc

2 Перенести запятую вправо на столько знаков, столько нулей в множителе 10, 100, 1000,

 $\hat{\Delta}$

3 Если в данной дроби не хватает разрядов при перенесении запятой, то справа к нему приписывают столько нулей, сколько не хватает разрядов.

ПРИМЕР

Выполнить действие: 0,0078 · 100000.

Решение.

- В числе 100 000 5 нулей.
- ② $0.0078 \cdot 100\ 000 = 780;$
- $\mathfrak{F}_{\mathfrak{p}}$ перенесли запятую на $\mathfrak{F}_{\mathfrak{p}}$ знаков вправо, из-за нехватки разряда справа дописали \mathfrak{g} .

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1) $76,3 \cdot 10;$

3) 0,019 · 100;

2) 1,49 · 100;

4) 20,0202 · 1000.

Помни!

Все законы сложения и умножения натуральных чисел верны и для обыкновенных, и для десятичных дробей.

$$a + b = b + a;$$

 $a + (b + a) = (a + b) + c;$
 $a \cdot b = b \cdot a;$
 $a \cdot (b \cdot c) = (ab)c;$
 $a(b + c) = ab + ac.$

Умножить десятичные дроби, как натуральные числа, в столбик, не обращая внимания не запятые.

В полученном ответе отделить запятой справа столько цифр, сколько их стоит после запятой в обоих множителях вместе.

Важно знать!

Если в произведении получилось меньше цифр, чем нужно отделить запятой, то впереди пишут нуль или несколько нулей.

ПРИМЕР 1

Выполнить умножение: 0,345 · 0,06.

Решение.

всего в обоих множителях 3+2=5 знаков

 $\bigcirc \frac{0,06}{0,02070}$

после запятой

ПРИМЕР 2

Выполнить умножение: 70,1 · 2,23.

Решение.

1 5 6, 3 2 3 всего в обоих множителях 2 + 1 = 3 знака после запятой

4)
$$0,24 \cdot 0,37$$
.

Умножение десятичной дроби на 0,1; 0,01; 0,001; ...

АЛГОРИТМ

1 Посчитать количество нулей в множителе 0,1; 0,01;

 \Box

Перенести запятую влево на столько знаков, сколько нулей в этом множителе.

亇

3 Если не хватает разрядов в данной дроби при перенесении запятой, то слева пишут нуль или несколько нулей.

ПРИМЕР

Выполнить действие: $7.03 \cdot 0.01$.

Решение.

- П В множителе 0,01 два нуля.
- \bigcirc 7,03 · 0,01 = 0,0703 (перенесли запятую на 2 знака вле-
- (3) во; впереди дописали два нуля).

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1) 738,3 · 0,01;

3) $49 \cdot 0.001$;

2) $115.5 \cdot 0.1$;

4) 1927,43 · 0,0001.

Деление десятичной дроби на 10; 100; 1000; ...

АЛГОРИТМ

Посчитать количество нулей в множителе 10; 100;

勹

2 Перенести запятую влево в данной дроби на столько знаков, сколько нулей в этом множителе.

亇

3 Если разрядов в целой части дроби не хватает, то перед целой частью пишут нуль или несколько нулей.

ПРИМЕР

Выполнить деление: 273,5:100.

Решение.

П В множителе 100 два нуля.

 \bigcirc 273,5 : 100 = 2,735.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1) 8,506:10; 3) 15,607:1000;

2) 716,01 : 100; **4)** 2138,15 : 10 000.

Важно знать!

Разделить число на 0,1; 0,01; 0,001; ... — это то же самое, что умножить его на 10; 100; 1000;

Деление десятичной дроби на натуральное число

АЛГОРИТМ

Разделить дробь на натуральное число в столбик, не обращая внимания на запятую.

Поставить запятую в частном, когда закончится деление целой части.

Помни!

Если целая часть меньше делителя, то частное начинается с нуля целых.

ПРИМЕР

Вычислить: 4,41: 7.

Решение.

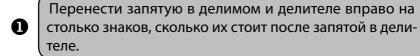
$$-\begin{array}{c|c}
4, 4 & 1 & 7 \\
4 & 2 & 0, 6 & 3 \\
\hline
2 & 1 & 0
\end{array}$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1) 2,59:37;

3) 22,5:125;


2) 7,56:6;

4) 69,44:32.

Деление десятичной дроби на десятичную дробь

АЛГОРИТМ

2 Выполнить деление на натуральное число.

ПРИМЕР

Выполнить деление: 14,976: 0,72.

Решение.

① 14,976:0,72=1497,6:72=20,8.1 4 9 7, 6 $\boxed{7\ 2}$

$$\begin{array}{c|c}
 & -\begin{array}{c|c}
 & 1 & 4 & 9 & 7 & 6 \\
 & 1 & 4 & 4 \\
\hline
 & 5 & 7 & 6 \\
 & \underline{5 & 7 & 6} \\
 & 0
\end{array}$$

- 1) Вычислить: 16,51: 1,27.
- 2) Петя проехал поездом 162,5 км за 2,6 ч. С какой скоростью шел поезд?
- 3) Решить уравнение: $0.6 \cdot x = 12.66$.
- 4) 2,5 кг печенья стоит 65 руб. Сколько стоит 3,5 кг такого печенья?

Нахождение среднего арифметического нескольких чисел

АЛГОРИТМ

Сложить данные числа.

 \bigcirc

Полученную сумму разделить на количество слагаемых.

ПРИМЕР

Найти среднее арифметическое чисел 6,3; 2,5; 1,2; 5,4. Решение.

- (1) 6.3 + 2.5 + 1.2 + 5.4 = 15.4;
 - ② 15,4: 4 = 3,85 или $\frac{6,3+2,5+1,2+5,4}{4} = \frac{15,4}{4} = 3,85$.

Помни!

Дробная черта означает деление.

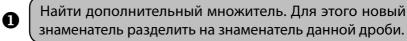
выполни самостоятельно

- **1)** Вычислить среднее арифметическое чисел: 1) 4,2 и 3,8; 2) 1,9; 1,8 и 2,3.
- 2) Масса одного из слитков серебра равна 2,7 кг, масса второго 5,3 кг, а масса третьего 4 кг. Найти среднюю массу слитка серебра.
- 3) Автомобиль за первый час проехал 60 км, за второй 66 км, за третий 56 км, за четвертый 70 км. Сколько километров в среднем преодолевал автомобиль за 1 час?

Важно помнить!

Чтобы найти среднюю скорость движения, нужно общий путь разделить на общее время.

ПРИВЕДЕНИЕ ДРОБЕЙ К НОВОМУ ЗНАМЕНАТЕЛЮ


Важно знать!

- Основное свойство дроби: $\frac{a}{b} = \frac{a \cdot c}{b \cdot c} = \frac{a \cdot c}{b \cdot c}$, где $a \neq 0$, $b \neq 0$, $c \neq 0$. Дробь не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же число, отличное от нуля.
- Сократить дробь значит разделить числитель и знаменатель дроби на их общий делитель.
- Несократимая дробь дробь, у которой числитель и знаменатель взаимно простые числа.
- Привести дробь к новому знаменателю значит заменить ее дробью с новыми числителем и знаменателем, кратными заданным.

Приведение дроби к новому знаменателю

АЛГОРИТМ

Дополнительный множитель умножить на числитель и знаменатель данной дроби. Получим искомую дробь.

ПРИМЕР

Привести дробь $\frac{5}{7}$ к знаменателю 42.

Решение.

① 42: 7 = 6 или
$$\frac{5^{\setminus 6}}{7} = \frac{6 \cdot 5}{42} = \frac{30}{42}$$
.

②
$$\frac{5}{7} = \frac{5 \cdot 6}{7 \cdot 6} = \frac{30}{42}$$
 — искомая дробь.

- 1. Привести дробь $\frac{4}{9}$ к знаменателю 36.
- 2. Привести дробь $\frac{7}{11}$ к знаменателю 55.
- 3. Сколько содержится пятнадцатых в $\frac{1}{3}$?
- 4. Сократить дробь $\frac{27}{36}$, а потом привести ее к знаменателю 16.

Найти устно любой общий делитель числителя и знаменателя дроби и разделить числитель и знаменатель дроби на него, применив основное свойство дроби.

Если получилась сократимая дробь, то снова найти общий делитель числителя и знаменателя и повторить п. 1.

Перемножить оставшиеся множители в числителе и в знаменателе дроби, получив в ответе несократимую 8 дробь.

Помни!

- Можно делить числитель и знаменатель дроби на их наибольший общий делитель.
- Можно разложить числитель и знаменатель дроби на простые множители и сократить общие делители.

ПРИМЕР

Сократить дробь: $\frac{18}{27}$.

Решение.

$$\bigcirc = \frac{6:3}{9:3} = \frac{2}{3}$$

или

$$\frac{27}{27} = \frac{3 \cdot \cancel{3} \cdot \cancel{3}}{3 \cdot \cancel{3} \cdot \cancel{3}} = \frac{3}{3}$$

или

①
$$HOД(18; 27) = 9.$$

$$2 \frac{18}{27} = \frac{18:9}{27:9} = \frac{2}{3}$$

Ombem: $\frac{2}{3}$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Сократить дробь:

1)
$$\frac{6}{8}$$
;

3)
$$\frac{28}{35}$$
;

2)
$$\frac{65}{45}$$
;

4)
$$\frac{72}{36}$$
.

Приведение дробей к наименьшему общему знаменателю

АЛГОРИТМ

Наименьший общий знаменатель дробей равен НОК знаменателей данных дробей.

Найти наименьший общий знаменатель данных дробей — НОК знаменателей данных дробей.

Разделить найденный общий знаменатель на знаменатель каждой дроби, т. е. найти дополнительный множитель для каждой дроби.

Умножить дополнительный множитель на числитель и знаменатель каждой дроби.

ПРИМЕР 1

Привести к наименьшему общему знаменателю дроби:

$$\frac{2}{9}$$
, $\frac{7}{24}$, $\frac{13}{18}$, $\frac{5}{6}$.

Решение.

①
$$HOK(9; 27; 18; 6) = 54.$$

$$2 54:9=6;54:27=2;54:18=3;54:6=9.$$

$$\frac{1}{9} = \frac{1}{6 \cdot 9} = \frac{1}{54};$$
 7^{2} $2 \cdot 7$ 14

$$\frac{7^{2}}{27} = \frac{6 \cdot 9}{2 \cdot 27} = \frac{54}{54};$$

$$\frac{13^{3}}{18} = \frac{3 \cdot 13}{3 \cdot 18} = \frac{39}{54};$$

$$\frac{5^{9}}{6} = \frac{9 \cdot 5}{9 \cdot 6} = \frac{45}{54}.$$

ПРИМЕР 2

Привести к наименьшему общему знаменателю дроби:

1)
$$\frac{6}{25}$$
 II $\frac{1}{5}$;

2)
$$\frac{1}{4}$$
 и $\frac{2}{3}$.

Решение.

1)

- (1) HOK(25; 5) = 25.
- (2) 25: 5 = 5.

$$3 \quad \frac{1^{5}}{5} = \frac{1 \cdot 5}{5 \cdot 5} = \frac{5}{25}.$$

2)

- (1) $HOK(4; 3) = 4 \cdot 3 = 12.$
- (2) 12: 4 = 3; 12: 3 = 4.

Важно знать!

- 1. В таких заданиях можно записывать только пункт 3 в решении (п. 1 и п. 2 выполняются устно).
- 2. Если знаменатели данных дробей взаимно простые числа, то чтобы найти наименьший общий знаменатель, достаточно их просто перемножить.
- 3. Если один из знаменателей дробей делится на знаменатель другой дроби, то он и есть наименьший общий знаменатель.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Привести дроби к наименьшему общему знаменателю:

1)
$$\frac{2}{7}$$
 u $\frac{3}{8}$;

3)
$$\frac{5}{21}$$
 u $\frac{4}{15}$;

2)
$$\frac{7}{18}$$
 $\times \frac{5}{36}$;

4)
$$\frac{7}{36}$$
, $\frac{13}{20}$ $\bowtie \frac{5}{48}$.

ДЕЙСТВИЯ С ДРОБЯМИ

Сравнение, сложение (вычитание) дробей с разными знаменателями

АЛГОРИТМ

Привести данные дроби к наименьшему общему знаменателю.

Сравнить (сложить, вычесть) полученные дроби с одинаковыми знаменателями.

ПРИМЕР

Сравнить (сложить, вычесть) дроби: $\frac{7}{12}$ и $\frac{1}{8}$.

Решение.

① HOK(12; 8) = 24;
$$\frac{7^{\setminus 2}}{12} = \frac{2 \cdot 7}{2 \cdot 2} = \frac{14}{24}$$
; $\frac{1^{\setminus 3}}{8} = \frac{3 \cdot 1}{3 \cdot 8} = \frac{3}{24}$.

Помни!

Все ранее изученные свойства действий сложение и вычитание верны и для сложения и вычитания дробей с разными знаменателями.

выполни самостоятельно

- 1) Вычислить: a) $\frac{5}{4} + \frac{1}{2}$; б) $\frac{3}{8} \frac{1}{6}$.
- 2) Сравнить: $\frac{17}{60}$ и $\frac{7}{15}$.
- 3) Решить уравнение: $x \frac{5}{16} = \frac{1}{10} + \frac{2}{5}$.
- 4) Площадь одного участка $\frac{3}{16}$ га, а второго на $\frac{1}{24}$ га больше. Найти площадь второго участка.

Важно знать!

Чтобы сложить (вычесть) смешанные числа с разными знаменателями в их дробной части, нужно дробные части этих смешанных чисел привести к наименьшему общему знаменателю и отдельно сложить (вычесть) целые части и дробные части этих чисел по известному правилу.

УМНОЖЕНИЕ ДРОБЕЙ

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d};$$
 $\frac{a}{b} \cdot c = \frac{a \cdot c}{b};$ $\frac{1}{a} \cdot a = 1;$

$$\frac{a}{b} \cdot c = \frac{a \cdot c}{b}$$
;

$$\frac{1}{a} \cdot a = 1;$$

$$\frac{a}{h}\cdot 0=0\cdot \frac{a}{h}=0;$$

$$\frac{a}{b} \cdot 0 = 0 \cdot \frac{a}{b} = 0;$$
 $\frac{a}{b} \cdot 1 = 1 \cdot \frac{a}{b} = \frac{a}{b};$ $\frac{a}{b} \cdot \frac{b}{a} = 1.$

$$\frac{a}{b} \cdot \frac{b}{a} = 1$$

Помни!

Законы умножения дробей такие же, как и законы умножения натуральных чисел (переместительный, сочетательный, распределительный).

Умножение обыкновенных дробей

АЛГОРИТМ

Записать в числителе дроби произведение числителей данных дробей, а в знаменателе — произведение их знаменателей.

Сократить дробь (если возможно).

Перемножить оставшиеся множители в числителе и знаменателе дроби.

Помни!

Сокращать можно дроби, записанные на одной общей дробной черте!

ПРИМЕР

Выполнить умножение: $\frac{3}{8} \cdot \frac{4}{15}$.

Решение.

① ② ③
$$\frac{3}{8} \cdot \frac{4}{15} = \frac{{}^{1}\cancel{3} \cdot \cancel{4}^{1}}{{}^{2}\cancel{8} \cdot \cancel{15}_{5}} = \frac{1 \cdot 1}{2 \cdot 5} = \frac{1}{10} = 0, 1.$$

Ответ: 0,1.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Вычислить: $\frac{7}{8} \cdot \frac{21}{16}$.
- **2)** Решить уравнение: $x:\frac{2}{5}=\frac{25}{28}$.
- 3) Найти площадь прямоугольника со сторонами $\frac{5}{12}$ м и $\frac{8}{15}$ м.
- **4)** Вычислить: $\frac{5}{8} \cdot 16$.
- 5) Вычислить: $\frac{7}{20} \cdot \frac{5}{14} \cdot 8$.

ДЕЛЕНИЕ ДРОБЕЙ

$$\frac{a}{b}: \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c};$$

$$\frac{a}{b}: c = \frac{a}{b \cdot c};$$

$$\frac{a}{b}: \frac{a}{b} = 1;$$

$$\frac{a}{b}: 1 = \frac{a}{b};$$

$$1: a = \frac{1}{a}.$$

На нуль делить нельзя!

Важно знать!

Числа, произведение которых равно 1, называются взаимно обратными. Например: a и $\frac{1}{a}$, $\frac{a}{b}$ и $\frac{b}{a}$.

Например:

1)
$$\frac{2}{3}$$
 и $\frac{3}{2}$ — взаимнообратные числа, т. к. $\frac{1}{2} \cdot \cancel{3}^1$ = $\frac{1 \cdot 1}{1 \cdot 1}$ = 1;

2) 7 и
$$\frac{1}{7}$$
 — взаимнообратные числа,

T. R.
$$7 \cdot \frac{1}{7_1} = \frac{17 \cdot 1}{7_1} = \frac{1 \cdot 1}{1} = \frac{1}{1} = 1;$$

АЛГОРИТМ

 Делимое (первая дробь) умножить на число, обратное делителю (перевернутая вторая дробь).

℧

2 Выполнить умножение дробей (сократить, если возможно).

 \bigcirc

3 Если полученная в ответе дробь неправильная, то выделить ее целую часть (перевести в смешанное число).

ПРИМЕР

АЛГОРИТМ

Выполнить действие: $\frac{4}{5}:\frac{4}{7}$.

Решение.

$$\frac{4}{5}: \frac{4}{7} = \frac{4}{5} \cdot \frac{7}{4} = \frac{\cancel{4} \cdot 7}{5 \cdot \cancel{4}} = \frac{7}{5} = 1\frac{2}{5} = 1, 4.$$
(1) (2) (3)

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1)
$$\frac{3}{8}:\frac{5}{7}$$
;

3)
$$\frac{8}{9}$$
: 4;

2)
$$\frac{2}{5}:\frac{1}{5}$$
;

4)
$$2:\frac{2}{3}$$
.

Деление и умножение смешанных чисел

Перевести смешанные числа в неправильные дроби.

⟨\}

Выполнить деление (умножение) дробей по известному правилу.

ПРИМЕР

Выполнить действие:

1)
$$7\frac{1}{3}:1\frac{2}{9}$$
;

2)
$$2\frac{1}{5} \cdot \frac{10}{11}$$
.

Решение.

1)
$$7\frac{1}{3}:1\frac{2}{9} = \frac{7\cdot 3+1}{3}:\frac{1\cdot 9+2}{9} = \frac{22}{3}:\frac{11}{9} = \frac{22}{3}:\frac{9}{11} = \frac{222\cdot 9^3}{13\cdot 11} = \frac{2\cdot 3}{1\cdot 1} = \frac{6}{1} = 6;$$

2)
$$2\frac{1}{5} \cdot \frac{10}{11} = \frac{2 \cdot 5 + 1}{5} \cdot \frac{10}{11} = \frac{11}{5} \cdot \frac{10}{11} = \frac{1}{\cancel{1}} \cancel{\cancel{1}} \cdot \cancel{\cancel{1}} \cancel{\cancel{1}} = \frac{1 \cdot 2}{1 \cdot 1} = \frac{2}{1} = 2.$$

Важно знать!

Можно умножать смешанное число на натуральное, применяя распределительный закон умножения. Например:

$$3 \cdot 1\frac{1}{3} = 3 \cdot \left(1 + \frac{1}{3}\right) = 3 \cdot 1 + 3 \cdot \frac{1}{3} = 3 + 1 = 4.$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1)
$$2\frac{3}{4} \cdot 4$$
;

3)
$$2\frac{2}{9}:1\frac{7}{9}$$
;

2)
$$1\frac{5}{9} \cdot 3\frac{4}{7} \cdot 5\frac{2}{5}$$
;

4)
$$7\frac{1}{5}:\frac{9}{10}$$
.

Важно знать!

- Чтобы найти дробь $\frac{a}{b}$ от числа c, нужно число умножить на дробь: $c \cdot \frac{a}{b}$.
- Чтобы найти число по значению его дроби, нужно данное число разделить на дробь $\left(\frac{a}{b}\right)$ числа составляют m, тогда это число равно m: $\frac{a}{b}$.

ПРОЦЕНТЫ

Процент — это одна сотая часть: $1\% = \frac{1}{100} = 0.01$. Вся величина: 1 = 100%.

Полезно знать!

- Чтобы перевести десятичную или обыкновенную дробь в проценты, нужно умножить ее на $100\,\%$: $0.3=0.3\cdot 100\,\%=30\,\%$.
- Чтобы проценты записать десятичной дробью, нужно число процентов разделить на 100: 25 % = 25 : 100 = 0.25.

Важно знать!

•
$$\frac{1}{2} = 0.5 = 50 \%$$

•
$$\frac{1}{4} = 0.25 = 25\%$$

•
$$\frac{1}{10} = 0.1 = 10\%$$

•
$$\frac{1}{20} = 0.05 = 5\%$$

Нахождение т % от числа А

алгоритм 61

1-й способ

2 $\left(\frac{A}{100} \cdot m - m\% \right)$ от числа A.

2-й способ

 $\mathbf{0}$ $(m\% = 0.01 \cdot m -$ перевели m% в дробь.

2 $A \cdot 0,01m - m\%$ от числа A (число умножили на полученную дробь).

ПРИМЕР

Найти 16 % от числа 500.

Решение.

1-й способ

- (1) 500: 100 = 5.
- (2) $16 \cdot 5 = 80.$

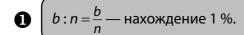
2-й способ

(1)
$$16\% = 0.16$$
.

$$(2)$$
 0,16 · 500 = 80.

Ответ: 80.

выполни самостоятельно


- 1) Найти 23 % от числа 300.
- 2) В 5«А» классе 28 учеников, а в 5«Б» классе 32 ученика. 10 % учащихся пятых классов отличники. Сколько отличников среди пятиклассников?
- 3) Найти сумму 56 % от 12 и 44 % от 12.
- 4) Сплав цинка и меди содержит 42 % меди. Сколько меди и цинка содержится в сплаве массой 140 г?

Нахождение числа b по его процентам

АЛГОРИТМ

1-й способ

2-й способ

 $n \% = 0.01 \cdot n$ — перевести проценты в дробь.

2 $(b:(0,01\cdot n)$ — данное число разделить на эту дробь.

ПРИМЕР

Найти число, 22% которого составляют 44.

Решение.

1-й способ

- $2 \cdot 100 = 200.$

2-й способ

 $(1) \quad 22 \% = 0,22.$

(2) 44: 0,22 = 4400: 22 = 200.

Omeem: 200.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

1) В классе 16 девочек, что составляет 32% числа всех учеников в классе. Сколько всего учащихся в классе?

2) Найти число, если 9% его составляют 72.

3) Масса сушеных грибов составляет 12% массы свежих. Сколько нужно взять свежих грибов, чтобы получить 3.6 кг сушеных?

4) Сторона одного квадрата 4,8 см и составляет 12% стороны другого квадрата. Найти площадь большего квадрата.

Нахождение процентного отношения двух чисел

АЛГОРИТМ

Найти процентное отношение чисел a и b.

 $oldsymbol{1}$ Найти частное чисел a и b: $\frac{a}{b}$

2 Полученный результат умножить на 100 %: $\frac{a}{b} \cdot 100$ %.

ПРИМЕР

В 80 г воды растворили 20 г сахара. Найти процентное отношение сахара в растворе.

Решение.

20 + 80 = 100 (г) — масса всего раствора.

① 20:100=0,2.

 $(2) \quad 0.2 \cdot 100 \% = 20 \%.$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Найти процентное отношение чисел:

1) 30 or 50;

3) 4,8 or 2,4;

2) 17 or 34;

4) 1,5 or 6.

ПРОПОРЦИИ

 $\frac{d}{h} = \frac{c}{d}$ — равенство двух отношений называется пропорцией.

где $a, b, c, d \neq 0$

основное свойство пропорции

$$ad = bc$$

$$\left(\frac{a}{b} \times \frac{c}{d}\right)$$

СВОЙСТВА ПРОПОРЦИИ

- 1) члены пропорции можно менять местами, тогда если a:b=c:d, то a:c=b:d, d:b=c:a, b:a=d:c; 2) если $\frac{a}{b}=\frac{c}{d}$, то $\frac{a+b}{b}=\frac{c+d}{d}$;
- 3) если $\frac{a}{h} = \frac{c}{d}$, a > b, c > d, то $\frac{a b}{h} = \frac{c d}{d}$;
- **4)** если $\frac{a}{b} = \frac{c}{d}$, то $\frac{a+b}{a} = \frac{c+d}{c}$;
- 5) если $\frac{a}{b} = \frac{c}{d}$, a > b, c > d, то $\frac{a b}{a} = \frac{c d}{c}$;
- **6)** если $\frac{a}{b} = \frac{c}{d}$, a > b, c > d, то $\frac{a+b}{a-b} = \frac{c+d}{c-d}$.

Нахождение неизвестного числа пропорции

АЛГОРИТМ

Перемножить известные члены одной диагонали. N

Полученное произведение разделить на известный член второй диагонали.

ПРИМЕР

Найти x в пропорции: 12: x = 6: 3.

Решение.

Перепишем пропорцию в виде: $\frac{12}{x} \times \frac{6}{3}$ — известны все члены диагонали (12 и 3).

- (1) $12 \cdot 3 = 36$.
- ② 36:6=6 или $x = \frac{12 \cdot 3}{6} = \frac{36}{6} = 6$.

Ответ: 6.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Найти неизвестный член пропорции:

- 1) $5:\frac{1}{2}=90:x;$
- 3) $\frac{2,5}{4} = \frac{11}{x}$;
- **2)** 0.5: x = 15: 2.4;
- 4) $\frac{6}{7} = \frac{y-1,2}{14}$.

Решение задач на проценты с помощью пропорции

1 Все число принимается за 100 %.

При составлении пропорции по условию задачи проценты пишем под процентами.

 $\frac{1}{\sqrt{2}}$

3 (Находим *x* — неизвестный член пропорции.

 $\overline{\Box}$

4 (Записываем ответ задачи.

ПРИМЕР

АЛГОРИТМ

Из свежих вишен после сушки выходит $15\,\%$ сушеных вишен. Сколько сушеных вишен получится из $120~\rm kr$ свежих?

Решение.

- \bigcirc 120 кг свежих вишен 100 %.
- \bigcirc x кг сушеных вишен 15 %.
- (3) $\frac{120}{100} = \frac{x}{15}$; $x = \frac{120 \cdot 15}{100} = \frac{1800}{100} = 18$ (kg).
- **Ответ:** из 120 кг свежих вишен выходит 18 кг сушеных.

Полезно знать!

Не всегда в задачах находят величину, соответствующую $100\,\%$.

Рассмотрим следующую задачу.

Цена одного детского билета в цирк составляет 1,6% общей стоимости билетов. Было продано 90% всех билетов на сумму 5850 руб. Сколько стоит один билет?

Решение.

Составим кратную запись условия задачи:

цена одного детского билета: ? — 1.6% стоимость проданных билетов: 5850 руб. — 90%

- $1)\ 5850:90=65\ (руб)$ столько рублей соответствуют $1\,\%$.
- 2) $65 \cdot 1,6 = 104$ (руб) столько рублей составляют 1,6%.

Ответ: детский билет стоит 104 руб.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

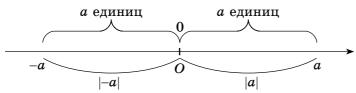
- 1) Руда содержит 70% железа. Сколько нужно взять руды, чтобы получить 42 т железа?
- **2)** В саду росло 500 деревьев. Яблони составляют 24 % всех деревьев. Сколько яблонь росло в саду?
- 3) В доме 48 квартир двухкомнатные, что составляет 30% всех квартир. Сколько всего квартир в доме?
- 4) Известно, что $25\,\%$ числа равны 90. Чему равны $60\,\%$ этого числа?

РАЦИОНАЛЬНЫЕ ЧИСЛА

• Отрицательные числа записываются со знаком минус: -2; -1,5;

- На координатной прямой все числа справа от нуля положительные (знак + перед ними не ставится), а все числа слева от нуля — отрицательные.
- Нуль не является ни положительным, ни отрицательным числом.
- **Противоположные числа** числа, которые отличаются только знаком.

Важно знать!


- N множество натуральных чисел, например: 1; 2; 3;
- **Z** множество целых чисел (положительные, противоположные им и 0): ...; -3; -2; -1; 0; 1; 2; 3;
- Q множество рациональных чисел (целые, дробные положительные, отрицательные числа и нуль):

...; ...; -3; ...; -0,01; ...; 0; ...; 7;

МОДУЛЬ ЧИСЛА

Модуль числа a — расстояние от начала отсчета (точки 0) до точки, изображающей число а на координатной прямой.

|a| — модуль числа а

Определение модуля можно записать так: $|a|=egin{cases} a,\ a\geq 0; \\ -a,\ a<0. \end{cases}$

Помни!

- 1) $a \ge 0$ означает, что a неотрицательное число (т. е. положительное или равное нулю); a < 0 означает, что a отрицательное число.
- 2) Модуль числа всегда является положительным числом (это расстояние!).

АЛГОРИТМ

Определить, какое число записано под знаком модуля.

 $\overline{\Box}$

2 Если это число положительное или равное нулю, то записать его в ответ.

или

3 Если это число отрицательное, то в ответ записать ему противоположное (опустить знак «минус»).

ПРИМЕР

Найти модули чисел:

1) 12,7;

2) 0;

3)
$$-\frac{5}{9}$$
.

Решение.

1)

(1)
$$12,7 > 0$$
.

$$(2)$$
 $|12,7| = 12,7.$

2)

 \bigcirc 0.

(2) |0| = 0.

3)

$$\bigcirc -\frac{5}{9} < 0.$$

выполни самостоятельно

- 1) Найти модули чисел: -17.3; 8; 0; $-16\frac{5}{9}$.
- **2)** Вычислить: |14| |-3| + |-1|.
- 3) Решить уравнение: a) |x| = 10; б) |y| = -2; в) |z| = 0.
- 4) Найти значение выражения |a| |b|, если a = -5,3; b = 4.

Помни!

$$|-a| = a; |a - b| = |b - a|; |a|^n = |a^n|;$$

 $\frac{|a|}{|b|} = \frac{|a|}{|b|}; |a \cdot b| = |a| \cdot |b|; |a + b| \le |a| + |b|.$

ПРАВИЛА СРАВНЕНИЯ РАЦИОНАЛЬНЫХ ЧИСЕЛ

Общее правило сравнения чисел: больше то число, которое расположено правее на координатной прямой.

Правила сравнения рациональных чисел:

- 1. Из двух положительных чисел больше то, модуль которого больше.
- 2. Из двух отрицательных чисел больше то, модуль которого меньше.
- 3. Из двух чисел с разными знаками всегда больше положительное число.

Помни!

- Любое положительное число больше нуля.
- Любое отрицательное число меньше нуля.

Сравнение рациональных чисел

АЛГОРИТМ

Определить знаки чисел, которые сравниваются.

2 (Выполнить сравнение по одному из правил 1–3.

ПРИМЕР

Сравнить числа:

- 1) -6.3 u -5.27;
- 3) -17 и 10.
- **2)** 15,3 и 15,32;

Решение.

Вариант 1

- ① -6.3 < 0; -5.27 < 0.
- \bigcirc По правилу 2: |-6,3|=6,3; |-5,27|=5,27; 6,3>5,27. Значит, -6,3<-5,27.

Вариант 2

- \bigcirc 15,3 > 0; 15,32 > 0.
- По правилу 1: |15,3| = 15,3; |15,32| = 15,32; 15,30 < 15,32. Значит, 15,3 < 15,32.

Вариант 3

- (1) -17 < 0; 10 > 0.
- По правилу 3: -17 < 10.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Сравнить числа:

1) -8 и -2;

3) $150\frac{7}{12}$ \times $150\frac{5}{12}$;

2) $-10\frac{1}{3}$ m 0,83;

4) -0,02 и 0.

ДЕЙСТВИЯ НАД РАЦИОНАЛЬНЫМИ ЧИСЛАМИ

Для рациональных чисел справедливы все законы сложения и умножения натуральных чисел.

Сложение чисел одинакового знака

АЛГОРИТМ

Сложить модули слагаемых.

Перед полученной суммой поставить знак слагаемых.

ПРИМЕР

Выполнить сложение: 1) 6 + 2,3; 2) -6 + (-2,3).

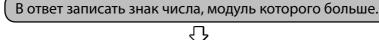
Решение.

1)
$$6 + 2,3 = |6| + |2,3| = 8,3;$$
(1) (2) (2) (2) $-6 + (-2,3) = -(|-6| + |-2,3|) = -(6 + 2,3) = -8,3.$
(2) (1)

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Найти сумму чисел:

3)
$$-2,3+(-2,3);$$


2)
$$-10 + (-2)$$
;

4)
$$-6.7 + \left(-\frac{1}{4}\right)$$
.

Сложение чисел с разными знаками

АЛГОРИТМ

Из большего модуля вычесть меньший и результат записать после определенного знака в п. 1.

Помни!

Сумма противоположных чисел равна нулю.

Выполнить сложение: 1) -14 + 9; 2) -6 + 10.

Решение.

$$\bigcirc$$
1) $-14+9=-(|-14|-|9|)=-(14-9)=-5;$ $|-14|>|9|$, значит, в ответ записываем знак «-».

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

3)
$$-6\frac{1}{3}+7\frac{2}{7}$$
;

2)
$$-9.75 + 9\frac{3}{4}$$
;

4) 5,14 +
$$\left(-3\frac{1}{4}\right)$$
.

АЛГОРИТМ

2 (К уменьшаемому прибавить полученное число.

ПРИМЕР

Выполнить действие:

1)
$$7 - (-3)$$
; 2) $-6\frac{9}{11} - 2\frac{2}{11}$.

Решение.

1)

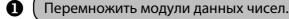
- (1) Числу -3 противоположное число 3.
- (2) 7 (-3) = 7 + 3 = 10.

2)

① Числу $-2\frac{2}{11}$ противоположное число $2\frac{2}{11}$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:


1)
$$-12 - (-5)$$
; 2) $24 - (-32)$; 3) $-3\frac{11}{45} - \left(-7\frac{8}{15}\right)$; 4) $-7 - 9$.

Умножение чисел с одинаковыми знаками

АЛГОРИТМ

$$(+) \cdot (+) = (+); (-) \cdot (-) = (+)$$

Полученный результат записать в ответ (произведение двух чисел с одинаковыми знаками есть число положительное).

ПРИМЕР

Выполнить действие: $-0.125 \cdot (-8)$.

Решение.

$$-0.125 \cdot (-8) = |-0.125| \cdot |-8| = 0.125 \cdot 8 = 1.$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1) $-6 \cdot (-0.5)$;

- 3) $-3 \cdot (-7,5)$;
- 2) $-100 \cdot (-2,732)$;
- 4) $\frac{3}{7} \cdot \frac{7}{9}$.

Умножение чисел с разными знаками

$$(+) \cdot (-) = (-); (-) \cdot (+) = (-)$$

Перемножить модули данных чисел.

Перед полученным результатом поставить знак «минус» (произведение двух чисел с разными знаками есть число отрицательное).

ПРИМЕР

Выполнить действие: $-0.15 \cdot 5$.

Решение.

$$-0.15 \cdot 5 = -(|-0.15| \cdot |5|) = -(0.15 \cdot 5) = -0.75.$$

Важно знать!

• Если в произведении четное число отрицательных множителей, то оно положительное; а если нечетное, то оно отрицательное.

$$-2 \cdot 3 \cdot (-5) \cdot (-1) = -30$$
; $-1 \cdot 3 \cdot (-2) \cdot 5 = 30$.

- Квадрат отрицательного числа есть число положительное.
- Куб отрицательного числа есть число отрицательное. $(-2)^2=4$; $(-2)^3=-8$.

$$(-2)^2 = 4$$
; $(-2)^3 = -8$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

1)
$$-5 \cdot 3\frac{1}{2}$$
;

3)
$$(-2)^3 \cdot (-2)^2$$
;

4)
$$-0.5 \cdot 4\frac{1}{2} \cdot (-2) \cdot \left(-\frac{2}{9}\right)$$
.

ДЕЛЕНИЕ РАЦИОНАЛЬНЫХ ЧИСЕЛ

$$(+): (+) = (+); (-): (-) = (+); (+): (-) = (-); (-): (+) = (-)$$

Помни!

Знак результата при делении определяется так же, как и при умножении рациональных чисел.

73

Деление рациональных чисел

АЛГОРИТМ

Определить знак результата по известным правилам.

Разделить модуль делимого на модуль делителя и записать в ответ.

ПРИМЕР

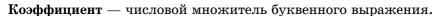
Выполнить действие:

1)
$$-4.8:2.4;$$
 2) $-\frac{7}{11}:\left(-2\frac{1}{5}\right).$

Решение.

① ②
1)
$$-4.8: 2.4 = -(|-4.8|: |2.4|) = -(4.8: 2.4) = -2$$
[(-): (+) = (-)];

2)
$$-\frac{7}{11}:\left(-2\frac{1}{5}\right) = +\left(\left|-\frac{7}{11}\right|:\left|-2\frac{1}{5}\right|\right) = \frac{7}{11}:\frac{11}{5} = \frac{7 \cdot 5}{11 \cdot 11} = \frac{35}{121}$$
[(-): (-) = (+)].


ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Вычислить:

3)
$$-\frac{3}{5}$$
: (-0,6);

2)
$$-46:23:$$

КОЭФФИЦИЕНТ. ПОДОБНЫЕ СЛАГАЕМЫЕ

Помни!

- 1. $1 \cdot a = a$.
- 2. Знак умножения между буквой и числом не пишется: $3 \cdot b = 3b$.

Подобные слагаемые — слагаемые, содержащие одинаковые буквенные множители.

Привести подобные слагаемые — значит сложить подобные слагаемые.

Приведение подобных слагаемых

АЛГОРИТМ

Подчеркнуть подобные слагаемые.

2 Сложить коэффициенты подобных слагаемых и результат умножить на буквенный множитель.

Помни!

- 1. Если слагаемое содержит несколько числовых множителей, нужно их перемножить.
- 2. Если коэффициенты двух слагаемых противоположные числа, то можно их вычеркнуть.

ПРИМЕР

Упростить: -8a + 4b - 2a - 4b + 5c - 4 + 6c - 8.

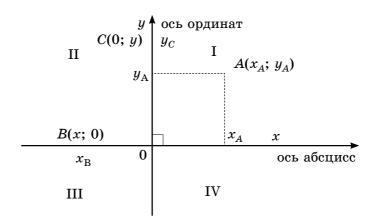
Решение.

$$\underbrace{}_{} - \underline{\underline{8a}} + \underline{\underline{4b}} - \underline{\underline{2a}} - \underline{\underline{4b}} + \underline{\underline{5c}} - \underline{\underline{4}} + \underline{\underline{6c}} - \underline{\underline{8}} =$$

$$(2) = (-8-2)a + (5+6)c + (-4-8) = -10a + 11c -12.$$

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- Упростить выражения:
- 1) 24x + 15x;


3) 2b - 3a + b;

2) 28b - b;

4) 2px + 5py - 2px - 0.5py.

КООРДИНАТНАЯ ПЛОСКОСТЬ

 $A(x_A; y_A)$ — точка A с координатами $(x_A; y_A)$; x_A — абсцисса точки A, y_A — ордината точки A; O(0; 0) — начало координат.

Откладывание точки на координатной плоскости

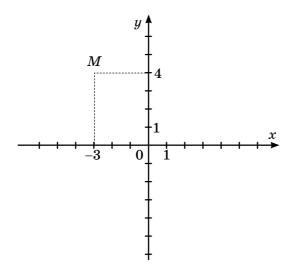
АЛГОРИТМ

Отложить на оси Ox абсциссу точки, провести через нее прямую, перпендикулярную оси Ox (перпендикуляр к оси Ox).

 \bigcirc

Отложить на оси *Oy* ординату точки, провести через нее прямую, перпендикулярную оси *Oy* (перпендикуляр к оси *Oy*).

 \Box


3 Точка пересечения этих перпендикуляров и есть данная точка (она единственная).

ПРИМЕР

Построить точку M(-3; 4).

Решение.

- \bigcirc На оси Ox отметим точку -3, проведем через нее перпендикуляр к оси Ox.
- \bigcirc На оси Oy отметим точку 4 и проведем через нее перпендикуляр к оси Oy.
- (3) Точка M точка пересечения этих перпендикуляров.

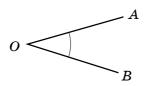
Важно знать!

- 1. Точки A(x; y) и B(-x; -y) симметричны относительно начала отсчета.
- 2. Точки A(x; y) и C(-x; y) симметричны относительно оси Oy.
- 3. Точки A(x; y) и D(x; -y) симметричны относительно оси Ox.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

Построить точки:

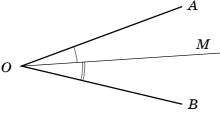
1) A(4; -8);


3) C(0; 2);

2) B(-5; 0);

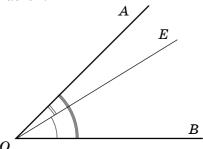
4) D(-6; -7).

УГОЛ



 $\angle AOB$ — угол AOB или $\angle O$ — угол O. Лучи OA и OB — стороны угла; точка O — вершина.

Виды углов	
Острый	$0^{\circ} < \angle M < 90^{\circ}$
M	
Тупой	$90^{\circ} < \angle K < 180^{\circ}$
K	
Прямой 	∠ <i>E</i> = 90°
Развернутый	∠ <i>A</i> = 180°


Помни!

- Вершина угла записывается посередине при записи угла.
- Углы равны, если при наложении они совпадают.
- У равных углов равны градусные меры.
- Больше тот угол, градусная мера которого больше.
- Луч с началом в вершине угла, который проходит внутри угла и делит угол пополам, называется биссектрисой угла.

луч OM — биссектриса $\angle AOB$; $\angle AOM = \angle BOM = \angle AOB: 2$

• Градусная мера угла (величина угла) равна сумме градусных мер его частей:

$$\angle AOB = \angle AOE + \angle BOE$$
.

• Чтобы найти часть угла, нужно из величины всего угла вычесть величину известной части:

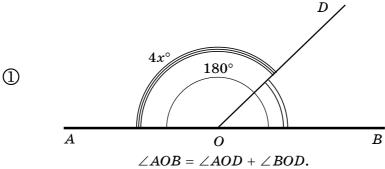
$$\angle EOB = \angle AOB - \angle AOE$$
.

Решение задач на нахождение градусной меры угла

76

- Сделать рисунок к задаче.
 - \triangle
- **2** Найти часть угла (или весь угол), используя данные в условии задачи.
 - ひ
- Записать ответ задачи.

ПРИМЕР


АЛГОРИТМ

Угол AOB — развернутый. Провели луч OD. Найти градусную меру угла AOD, если угол AOD в 4 раза больше угла BOD.

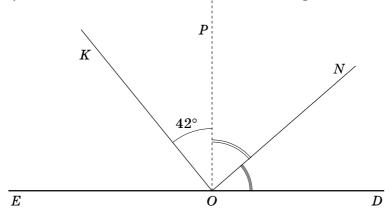
Решение.

Составим краткое условие задачи:

Пусть $\angle BOD = x^{\circ}$, тогда $\angle AOD = 4x^{\circ}$.

Так как их сумма равна 180° , составим и решим урав-

② нение:

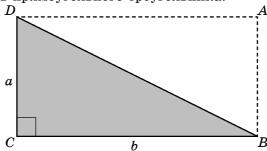

 $4x+x=180;\ 5x=180;\ x=180:5;\ x=36.$ Итак, $\angle BOD=36^\circ,\$ тогда $\angle AOD=4\cdot36^\circ=144^\circ$ (или $\angle AOB=180^\circ-36^\circ=144^\circ).$

(3) Omsem: $\angle AOD = 144^{\circ}$.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Луч BD биссектриса $\angle ABC$. Найти градусную меру $\angle DBC$, если $\angle ABC = 160^{\circ}$.
- 2) $\angle AOC = 132^{\circ}$, провели луч OB внутри $\angle AOC$. Найти градусную меру $\angle AOB$, если $\angle BOC = 35^{\circ}$.
- 3) Определить градусную меру $\angle KON$, изображенного на рисунке, если $\angle EOP = \angle DOP$, ON биссектриса $\angle DOP$.

4) Внутри прямого угла ACB провели луч CD. Найти градусные меры углов ACD и BCD, если разность градусных мер углов ACD и BCD равна 40° .


ТРЕУГОЛЬНИК

Виды треугольников		
по углам	по сторонам	
остроугольный	разносторонний В	
$egin{array}{c} B \\ \hline A \\ \angle A, \angle B, \angle C - ext{ острые} \end{array}$	$A \qquad \qquad b \qquad \qquad b$ $C \qquad \qquad C$ $P = a + b + c$	
тупоугольный A B C $\angle B$ — тупой, $\angle A$, $\angle C$ — острые	равнобедренный C A B B $AB = BC = a$ — боковые стороны, $AC = b$ — основание: $P = 2a + b$	
прямоугольный A	равносторонний C A A A B A B A B A B A B A B A	

Важно знать!

• Площадь прямоугольного треугольника:

 $S_{\Lambda DCB} = S_{ABCD}$: 2; $S_{\Lambda DCB} = (ab)$: 2

- В треугольнике только один угол может быть прямым или тупым.
- Сумма всех углов любого треугольника равна 180°.

Решение задач на нахождение периметра и площади треугольника

АЛГОРИТМ

Найти неизвестные стороны треугольника, переведя их длины в одинаковые единицы измерения.

 $\overline{\mathbb{Q}}$

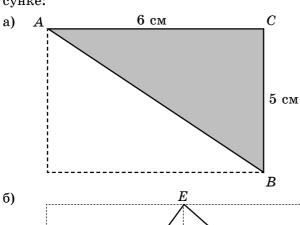
Выбрать необходимую формулу для нахождения неизвестной величины, учитывая вид треугольника, по условию задачи.

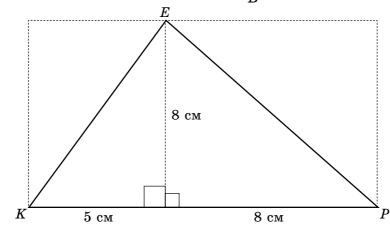
3 (Записать ответ.

ПРИМЕР

Одна из сторон треугольника имеет длину 2 дм 5 см, а другая — вдвое длиннее. Длина третьей стороны на 1 дм 8 см меньше, чем сумма длин двух первых сторон. Найти периметр треугольника.

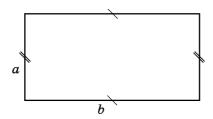
Решение.


Составим краткое условие задачи:

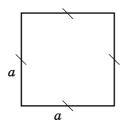

- - 2) (25 + 50) 18 = 57 (cm) c;
- 3) P = a + b + c25 + 50 + 57 = 132 (cm) — P.
- Ф Ответ: периметр треугольника равен 132 см.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Основание равнобедренного треугольника равно 12 см, а боковая сторона на 5 см больше него. Найти периметр треугольника.
- **2)** Найти периметр равностороннего треугольника со стороной 17 дм.
- 3) Сторона BC треугольника ABC на 7 см больше стороны AB, которая на 6 см меньше стороны AC. Найти стороны треугольника ABC, если его периметр равен 49 см.
- 4) Вычислить площадь треугольника, изображенного на рисунке:



ПРЯМОУГОЛЬНИК И КВАДРАТ


ПРЯМОУГОЛЬНИК

$$S = a \cdot b;$$

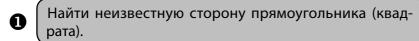
 $P = 2 \cdot (a + b) = 2a + 2b$
 S — площадь;
 P — периметр

КВАДРАТ

$$S = a \cdot a = a^2;$$

 $P = 4a$
 S — площадь;
 P — периметр

Помни!


a + b = P : 2 — полупериметр

Помни!

- Две фигуры называются равными, если при наложении они совпадают.
- Если фигуры равны, то их площади и периметры равны.
- Площадь любой фигуры равна сумме площадей ее частей.
- Единицы измерения площади:
 - 1 мм² квадратный миллиметр площадь квадрата со стороной 1 мм;
 - 1 см² квадратный сантиметр площадь квадрата со стороной 1 см;
 - 1 дм² квадратный дециметр площадь квадрата со стороной 1 дм;
 - 1 м 2 квадратный метр площадь квадрата со стороной 1 м;
 - 1 а ар (сотка) площадь квадрата со стороной 10 м;
 - 1 га гектар площадь квадрата со стороной 100 м. $1 \text{ мм}^2 \xrightarrow{\times 100} 1 \text{ см}^2 \xrightarrow{\times 100} 1 \text{ дм}^2 \xrightarrow{\times 100} 1 \text{ м}^2 \xrightarrow{\times 100} 1$ $\xrightarrow{\times 100} 1 \text{ а} \xrightarrow{\times 100} 1 \text{ га} \xrightarrow{\times 100} 1 \text{ км}^2$

Решение задач с использованием формул площадей прямоугольника и квадрата

АЛГОРИТМ

По условию задачи выбрать необходимую формулу для нахождения площади прямоугольника (квадрата) и подставить вместо букв их значения в формулу.

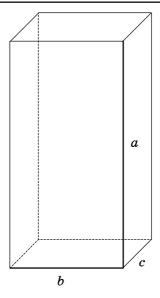
Записать ответ задачи.

Площадь квадрата со стороной 12 см равна площади прямоугольника, одна из сторон которого равна 60 мм. Найти периметр прямоугольника.

Решение.

- (1) $12^2 = 12 \cdot 12 = 144 \text{ (cm}^2); S_{KB} = a^2;$
 - 60 мм = 6 см одна сторона прямоугольника;
- 144:6=24 (см) вторая сторона прямоугольника (2) ($S=ab,\ b=S:a$);
- $2 \cdot (24+6) = 2 \cdot 30 = 60$ (см) периметр прямоугольника (P = 2(a+b)).
- ③ *Ответ*: периметр прямоугольника равен 60 см.

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

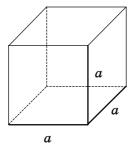


- 1. Одна сторона прямоугольника равна 8 см, а вторая в 2 раза меньше. Найти площадь прямоугольника.
- 2. Как изменится площадь квадрата, если его сторону увеличить в 3 раза?
- **3.** Сколько квадратов со стороной 1 см вмещает прямоугольник со сторонами 40 мм и 3 см?
- 4. Ширина детского парка прямоугольной формы равна 150 м, а его площадь 6 га. Найти периметр парка.

ПРЯМОУГОЛЬНЫЙ ПАРАЛЛЕЛЕПИПЕД И КУБ

ПРЯМОУГОЛЬНЫЙ ПАРАЛЛЕЛЕПИПЕД

a, b, c — линейные измерения прямоугольного параллелепипеда ребра, выходящие из одной вершины:


 $V_{\pi \pi} = a \cdot b \cdot c$ — объем прямоугольного параллелепипеда;

 $S_{\pi,\pi} = 2(ab + bc + ac) = 2ab + 2bc + 2ac$ площадь поверхности прямоугольного параллелепипеда (сумма площадей всех его граней);

4(a+b+c) — сумма длин всех ребер прямоугольного параллелепипеда.

КУБ

a — ребро куба;

 $V_{_{
m K}}=a^3=a\cdot a\cdot a$ — объем куба; $S_{_{
m K}}=6\cdot a^2$ — площадь поверхности

12 · а — сумма длин всех ребер куба.

Важно знать!

- Равные прямоугольные параллелепипеды имеют равные объемы.
- Объем прямоугольного параллелепипеда равен сумме объемов его частей.
- Единицы измерения объема:
 - 1 мм³ кубический миллиметр объем куба с ребром

 - 1 см^3 кубический сантиметр и т. д. $1 \text{ мм}^3 \xrightarrow[]{\times 1000} 1 \text{ см}^3 \xrightarrow[]{\times 1000} 1 \text{ дм}^3 \xrightarrow[]{\times 1000} 1 \text{ м}^3$; $1 \text{ дм}^3 = 1 \text{ л}$

Решение задач на нахождение объема прямоугольного параллелепипеда и куба

АЛГОРИТМ

 Найти линейные измерения прямоугольного параллелепипеда (или куба).

Выбрать формулу для нахождения неизвестной величины по условию задачи и вычислить значение этой величины.

Записать ответ задачи.

ПРИМЕР

Одно ребро прямоугольного параллелепипеда равно 6 дм, второе — в 2 раза больше первого, а третье — на 4 дм больше первого. Найти объем прямоугольного параллелепипеда, площадь его поверхности и сумму длин всего его ребер.

Решение.

Составим краткое условие задачи:

- $(1) 6 \cdot 2 = 12 (дм) b;$
 - 2) 6 + 4 = 10 (дм) c;
 - 3) $V_{\pi} = a \cdot b \cdot c$

$$6\cdot 12\cdot 10 = 720 \text{ (дм}^3) - V;$$

4) $S_{\pi,\pi} = 2(ab + bc + ac)$

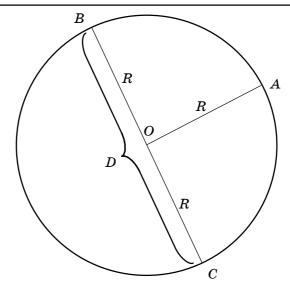
②
$$2(6 \cdot 12 + 6 \cdot 10 + 12 \cdot 10) = 2(72 + 60 + 120) =$$

= $2 \cdot 252 = 504 \text{ (gm}^2\text{)} - S;$

5) 4(a+b+c) — сумма длин всех ребер $4 \cdot (6+12+10) = 4 \cdot 28 = 112$ (дм).

Ответ: объем прямоугольного параллелепипеда равен

3 720 дм³, площадь его поверхности — 504 дм², сумма длин всех ребер — 112 дм.


ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Найти объем куба, ребро которого 5 см.
- 2) Найти объем куба, если площадь его грани равна 49 дм².
- 3) Найти сумму длин всех ребер прямоугольного параллелепипеда, если его объем равен $8000~{\rm cm}^3$, а два ребра равны $20~{\rm cm}$ и $40~{\rm cm}$.

ДЛИНА ОКРУЖНОСТИ И ПЛОЩАДЬ КРУГА

(O; R) — окружность с центром в точке O и радиусом R;

OA = OB = OC = R;

BC = D — диаметр окружности:

D = 2R; R = D : 2;

C — длина окружности;

S — площадь круга;

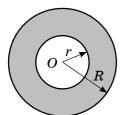
 π (пи) $\approx 3,14$ (π (пи) $\approx \frac{22}{7}$);

 $C = \pi D$; $C = 2\pi R$; $S = \pi R^2$.

Решение задач на нахождение длины окружности и площади круга

АЛГОРИТМ

Определить радиус окружности (круга).


2 Вычислить длину окружности (площадь круга), применяя формулы.

3 (Записать ответ.

ПРИМЕР

Найти площадь заштрихованной части, если радиус большего круга — 12 дм, а длина окружности меньшего радиуса равна 8π дм.

Решение.

① $8\pi : 2\pi = 4 \text{ (дм)} - r \text{ (}C = 2\pi\text{r, } r = C : 2\pi\text{)}$

$$\pi\cdot 4^2=\pi\cdot 16=16\cdot \pi$$
 (дм 2) — $S_{_{
m M}}$ ($S_{_{
m KP}}=\pi R^2$)

② $\pi \cdot 12^2 = \pi \cdot 144 = 144\pi \; (дм^2) - S_6$

$$144\pi - 16\pi = 128\pi$$
 (дм 2) — $S_{\text{затемнен}}$.

3 *Ответ*: площадь заштрихованной части равна 128π дм².

ВЫПОЛНИ САМОСТОЯТЕЛЬНО

- 1) Найти длину окружности радиусом 0,8 см.
- 2) Найти площадь круга, диаметр которого 10 см.
- 3) Длина окружности равна 36π м. Найти ее диаметр.
- **4)** Площадь круга равна 0.64π дм². Найти его радиус.

ОТВЕТЫ К ЗАДАНИЯМ «ВЫПОЛНИ САМОСТОЯТЕЛЬНО!»

АЛГОРИТМ 1

- 1) один миллиард тридцать семь миллионов девятьсот восемьдесят пять тысяч триста сорок семь;
- 2) тридцать восемь миллионов пять тысяч один;
- 3) триста шестьдесят девять миллиардов восемьсот девяносто девять миллионов пятьсот пятьдесят пять тысяч триста двадцать четыре;
- 4) пять миллионов двенадцать.

АЛГОРИТМ 2

- 1) 745623917141;
- 2) 2003040327;
- 3) 7507009;
- 4) 20000002.

АЛГОРИТМ 3

- 1) $768 = 7 \cdot 100 + 6 \cdot 10 + 8 \cdot 1$;
- 2) $36217 = 3 \cdot 10000 + 6 \cdot 1000 + 2 \cdot 100 + 1 \cdot 10 + 7 \cdot 1$;
- 3) $1148302 = 1 \cdot 1000000 + 1 \cdot 100000 + 4 \cdot 10000 + 8 \cdot 1000 + 3 \cdot 100 + 2 \cdot 1$;
- 4) $5000000249 = 5 \cdot 10000000000 + 2 \cdot 100 + 4 \cdot 10 + 9 \cdot 1$.

АЛГОРИТМ 4

- **1)** >;
- 2) <;
- 3) <;
- **4)** <.

АЛГОРИТМ 5

- 1) 760;
- 2) 25000;
- 3) 3100000;
- 4) 62000000.

АЛГОРИТМ 6

- 1) 25441:
- 2) 846 755;
- 3) 25 181 190;
- 4) 15619.

АЛГОРИТМ 7

100

100

- 1) (17 + 83) + (42 + 58) = 200;
- 2) 140 300;
- 3) 15007;
- 4) 495.

АЛГОРИТМ 8

- 1) 715;
- 2) 5632;
- 3) 7145;
- 4) 84 974.

АЛГОРИТМ 9

- 1) 983;
- 2) 83;
- 3) 850;
- 4) 909.

АЛГОРИТМ 10

- 1) 106;
- 2) 615;
- 3) 821;
- **4)** 0.

АЛГОРИТМ 11

- **1)** 506 л;
- 2) 60 km;
- 3) 92 баночки;
- **4)** пионов 29; роз 55; гладиолусов 46.

АЛГОРИТМ 12

- 1) 120;
- 2) 34 200;
- 3) 50800000;
- **4)** 152 000.

АЛГОРИТМ 13

- 1) 56m;
- 2) 450bx;
- 3) 200abc;
- 4) 30xy.

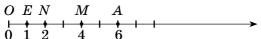
- 1) 65;
- 2) 40 900;
- **3)** 32*y*;
- **4)** 89b.

АЛГОРИТМ 15

- 1) 60 4c;
- 2) 10x + 20;
- 3) 75 25a;
- 4) 19b + 76.

АЛГОРИТМ 16

- 1) 8;
- 2) 81;
- 3) 49;
- 4) 32.


АЛГОРИТМ 17

- 1) 60 (ост. 8);
- 2) 1 (ост. 45);
- 3) 22 (ост. 2);
- 4) 83 (ост. 3).

АЛГОРИТМ 18

- 1) 94;
- 2) 32;
- 3) 627;
- 4) 800.

АЛГОРИТМ 19

- 1) 504; 735; 1002; 2037;
- 2) 405; 738; 7704; 333.

- 1) $2^2 \cdot 3$;
- 2) $2^2 \cdot 3^2$;
- 3) $2^2 \cdot 5^2 \cdot 11$;
- 4) $2 \cdot 3^4 \cdot 5^3$.

АЛГОРИТМ 22

- 1) 10;
- 2) 40;
- 3) 13;
- 4) 41 ребенок, 3 апельсина и 2 яблока.

АЛГОРИТМ 23

- 1) 24;
- 2) 91;
- 3) 98;
- **4)** 204.

АЛГОРИТМ 24

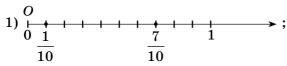
- 1) 12;
- 2) 5;
- 3) 195;
- **4)** 1.

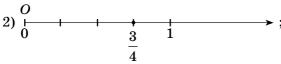
АЛГОРИТМ 25

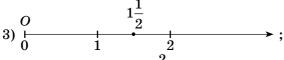
- **1)** 123 и 155;
- 2) 20 км;
- 3) 28 лет;
- 4) 33 человека в 1 зале и 43 человека во 2 зале.

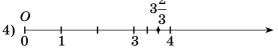
АЛГОРИТМ 26

- 1) 650 km;
- 2) 60 км/ч, 70 км/ч;
- 3) 72 км/ч;
- **4)** 2 ч.


- 1) 54 км/ч;
- **2)** 5 ч;
- **3)** 4 ч;
- 4) 17 км/ч.


- 1) 445 km;
- 2) 847 KM;
- 3) 62 км/ч;
- **4)** 2 ч.


АЛГОРИТМ 29


- **1)** 4 ч;
- **2)** 8 ч;
- 3) 6 ч;
- 4) $v_{\rm c}=10~{\rm km/y},~v_{\rm rey}=2~{\rm km/y}.$

АЛГОРИТМ 30

АЛГОРИТМ 31

- 1) 140°;
- 2) 4 кг;
- 3) 12 км;
- **4)** 2 κг.

- 1) 21;
- 2) 72°;
- 3) 30 учеников;
- 4) со смородиной на 20 булочек меньше.

- 1) a) =; б) >; в) >; г) >; д) >; е) <;
- 2) $\frac{1}{19}$; $\frac{5}{19}$; $\frac{6}{19}$; $\frac{7}{19}$; $\frac{9}{19}$; $\frac{12}{19}$; $\frac{19}{19}$;
- 3) $\frac{19}{20}$;
- **4)** x = 6.

АЛГОРИТМ 34

- 1) $7\frac{6}{15}$;
- 2) $30\frac{3}{4}$;
- 3) $5\frac{16}{26}$;
- 4) $17\frac{4}{9}$.

АЛГОРИТМ 35

- 1) $\frac{23}{3}$;
- 2) $\frac{31}{6}$;
- 3) $\frac{164}{5}$;
- 4) $\frac{95}{8}$.

- 1) $\frac{57}{55} = 1\frac{2}{55}$;
- 2) $\frac{32}{96} = \frac{1}{3}$;
- 3) $\frac{41}{89}$;
- 4) $\frac{63}{57} = 1\frac{6}{57}$.

- 1) $\frac{41}{45}$;
- 2) $\frac{23}{39}$;
- 3) $4\frac{4}{7}$;
- 4) $9\frac{5}{9}$.

АЛГОРИТМ 38

- 1) $26\frac{1}{2}$;
- 2) $16\frac{11}{12}$;
- 3) $4\frac{15}{19}$;
- 4) $11\frac{3}{7}$.

АЛГОРИТМ 39

- 1) три целых восемь десятых;
- 2) триста две целых семнадцать сотых;
- 3) нуль целых сорок девять сотых;
- 4) пятнадцать целых двадцать пять десятитысячных.

АЛГОРИТМ 40

- 1) 0,3;
- 2) 2,17;
- 3) 10,0002;
- 4) 0,00127.

АЛГОРИТМ 41

- 1) 3,16;
- 2) 5,75;
- 3) 0,875;
- **4)** 0,4.

- 1) 0,(3);
- 2) 0,1(6);
- 3) 0,(2);
- 4) 0.5(3) (читают: нуль целых пятьдесят три сотых три в периоде).

- 1) $\frac{112}{1000}$;
- 2) $3\frac{5}{10}$;
- 3) $10\frac{2}{100}$;
- 4) $\frac{504}{10000}$.

АЛГОРИТМ 44

- 1) 16;
- 2) 3,7;
- 3) 0,018;
- 4) 9,90.

АЛГОРИТМ 45

- **1.** 1) >; 2) <;
- 2. 0,09; 0,083; 0,036; 0,0072; 0,0055;
- 3. 11 и 12.

АЛГОРИТМ 46

- 1) 34,15 m;
- 2) 190,18 T;
- 3) 2,56;
- **4)** 3,7.

АЛГОРИТМ 47

- 1) 763;
- 2) 149;
- 3) 1,9;
- 4) 20020,2.

- 1) 23,75;
- 2) 272;
- 3) 27,3402;
- 4) 0,0888.

- 1) 7,383;
- 2) 11,55;
- 3) 0,049;
- 4) 0,192743.

АЛГОРИТМ 50

- 1) 0,8506;
- 2) 7,1601;
- 3) 0,015607;
- 4) 0,213815.

АЛГОРИТМ 51

- 1) 0,07;
- 2) 1,26;
- 3) 0,18;
- 4) 2,17.

АЛГОРИТМ 52

- 1) 13;
- 2) 62,5 km/ч;
- 3) 21,1;
- 4) 91 pyő.

АЛГОРИТМ 53

- 1) 1) 4; 2) 2;
- 2) 4 KF;
- 3) 63 км/ч.

- 1) $\frac{16}{36}$;
- 2) $\frac{35}{55}$;
- 3) $\frac{5}{15}$;
- 4) $\frac{12}{16}$.

- 1) $\frac{3}{4}$;
- 2) $\frac{13}{19}$;
- 3) $\frac{4}{5}$;
- 4) $\frac{13}{6}$.

АЛГОРИТМ 56

- 1) $\frac{16}{56}$ \times $\frac{21}{56}$;
- 2) $\frac{14}{36}$ $\times \frac{5}{36}$;
- 3) $\frac{25}{105}$ \times $\frac{28}{105}$;
- 4) $\frac{140}{720}$; $\frac{468}{720}$; $\frac{75}{720}$.

АЛГОРИТМ 57

- 1) a) $\frac{7}{4} = 1\frac{3}{4}$; 6) $\frac{5}{24}$;
- 2) <;
- 3) $\frac{13}{16}$;
- 4) $\frac{11}{48}$ ra.

- 1) $\frac{147}{128} = 1\frac{19}{128}$;
- 2) $\frac{5}{14}$;
- 3) $\frac{2}{9}$ m²;
- 4) 10;
- **5)** 1.

- 1) $\frac{21}{40}$;
- **2)** 2;
- 3) $\frac{2}{9}$;
- **4)** 3.

АЛГОРИТМ 60

- 1) 11;
- 2) 30;
- 3) $1\frac{1}{4}$;
- **4)** 8.

АЛГОРИТМ 61

- 1) 69;
- 2) 6 учеников;
- 3) 12;
- 4) 58,8 г меда; 81,2 цинка.

АЛГОРИТМ 62

- 1) 50 учеников;
- 2) 800;
- 3) 30 Kr;
- 4) 1600 cm^2 .

АЛГОРИТМ 63

- 1) 60%;
- 2) 50%;
- 3) 200%;
- 4) 25%.

- 1) 9;
- 2) 0,08;
- 3) 17,6;
- 4) 13,2.

- 1) 60 T;
- 2) 120 яблонь;
- 3) 160 квартир;
- **4)** 216.

АЛГОРИТМ 66

- 1) 17,3; 8; 0; $16\frac{5}{9}$;
- 2) 12;
- 3) а) -10; 10; б) нет решений; в) 0;
- 4) 1,3.

АЛГОРИТМ 67

- 1) <;
- 2) <;
- 3) >;
- **4)** <.

АЛГОРИТМ 68

- **1)** 8;
- 2) -12;
- 3) -4,6;
- 4) -6,95.

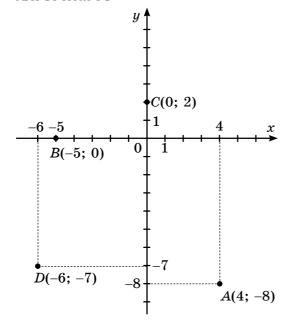
АЛГОРИТМ 69

- 1) -23;
- 2) 0;
- 3) $\frac{20}{21}$;
- 4) 1,89.

- 1) -7;
- 2) 56;
- 3) $4\frac{13}{45}$;
- **4)** -16.

- 1) 3;
- 2) 273,2;
- 3) 22,5;
- 4) $\frac{1}{3}$.

АЛГОРИТМ 72


- 1) -17,5;
- 2) -0.9;
- 3) -32;
- **4)** -1.

АЛГОРИТМ 73

- 1) 2,2;
- **2)** -2;
- 3) -1;
- 4) -3,68.

АЛГОРИТМ 74

- 1) 39x;
- 2) 27b;
- 3) 3b 3a;
- 4) 4,5py.

- 1) 80° ;
- 2) 97°;
- 3) 87°;
- **4)** 25° и 65°.

АЛГОРИТМ 77

- 1) 46 cm;
- **2)** 51 дм;
- 3) AC = 18 cm, AB = 12 cm, DC = 19;
- 4) a) 15 cm^2 ; б) 52 cm^2 .

АЛГОРИТМ 78

- 1) 32 cm²;
- 2) увеличится в 9 раз;
- 3) 12;
- 4) 1100 m.

АЛГОРИТМ 79

- 1) 125 cm^3 ;
- **2)** 343 дм³;
- 3) 280 cm;

- 1) 5,024 cm;
- 2) $78,5 \text{ cm}^2$;
- 3) 36 m;
- **4)** 0,8 дм.

СПИСОК АЛГОРИТМОВ

- А 1. Чтение многозначных натуральных чисел (с. 5)
- А 2. Запись многозначных натуральных чисел (с. 6)
- **А** 3. Запись натурального числа в виде суммы разрядных слагаемых (с. 7)
- А 4. Сравнение натуральных чисел (с. 9)
- А 5. Округление натуральных чисел (с. 10)
- А 6. Сложение натуральных чисел (с. 11)
- **А 7.** Сложение натуральных чисел удобным способом (с. 12)
- А 8. Вычитание натуральных чисел (с. 13)
- **А 9.** Вычитание натуральных чисел удобным способом (с. 14)
- **А 10.** Нахождение значения буквенного выражения (с. 15)
- А 11. Решение задач на сложение и вычитание (с. 16)
- **А 12.** Умножение натурального числа на 10, 100, 1000 и т. д. (с. 18)
- А 13. Упрощение выражений с помощью сочетательного закона умножения (с. 18)
- **А 14.** Преобразование выражений с помощью распределительного закона умножения (с. 19)
- **А 15.** Раскрытие скобок с помощью распределительного закона умножения (с. 20)
- А 16. Вычисление степени числа (с. 21)
- **А 17.** Деление многозначных натуральных чисел с остатком (с. 23)
- А 18. Порядок выполнения действий (с. 24)
- **А 19.** Изображение натуральных чисел на числовом луче (с. 25)
- А 20. Признаки делимости чисел на 3 и 9 (с. 26)
- **А 21.** Разложение натурального числа на простые множители (с. 27)

- А 22. Нахождение НОД нескольких чисел (с. 29)
- А 23. Нахождение НОК нескольких чисел (с. 30)
- А 24. Решение уравнений (с. 32)
- А 25. Решение задач с помощью уравнений (с. 33)
- А 26. Задачи на движение навстречу друг другу (с. 35)
- **А 27.** Решение задач на движение в одном направлении (с. 37)
- **А 28.** Решение задач на движение в противоположных направлениях (с. 39)
- А 29. Решение задач на движение по реке (с. 41)
- **А 30.** Изображение обыкновенной дроби на координатном луче (с. 43)
- А 31. Нахождение дроби от числа (с. 44)
- А 32. Нахождение числа по его дроби (с. 46)
- А 33. Сравнение обыкновенных дробей (с. 47)
- **А 34.** Выделение целой части из неправильной дроби (с. 49)
- **А 35.** Запись смешанного числа в виде неправильной дроби (с. 50)
- **А 36.** Сложение и вычитание дробей с одинаковыми знаменателями (с. 51)
- **А 37.** Вычитание правильной дроби из натурального числа (с. 52)
- **А 38.** Вычитание правильной дроби из натурального числа (с. 53)
- А 39. Чтение десятичных дробей (с. 56)
- **А 40.** Запись обыкновенной дроби со знаменателем 10, 100, 1000 и т. д. в виде десятичной дроби (с. 57)
- **А 41.** Запись обыкновенной дроби в виде десятичной (с. 58)
- **А 42.** Периодическая бесконечная десятичная дробь (с. 59)

- А 43. Запись десятичной дроби в виде обыкновенной (с. 60)
- А 44. Округление десятичных дробей (с. 61)
- А 45. Сравнение десятичных дробей (с. 62)
- А 46. Сложение и вычитание десятичных дробей (с. 63)
- **А 47.** Умножение десятичных дробей на 10, 100, 1000, ... (с. 64)
- А 48. Умножение десятичных дробей (с. 65)
- **А 49.** Умножение десятичной дроби на 0,1; 0,01; 0,001; ... (с. 66)
- **А 50.** Деление десятичной дроби на 10; 100; 1000; ... (с. 66)
- **А 51.** Деление десятичной дроби на натуральное число (с. 67)
- **А 52.** Деление десятичной дроби на десятичную дробь (с. 68)
- **А 53.** Нахождение среднего арифметического нескольких чисел (с. 69)
- А 54. Приведение дроби к новому знаменателю (с. 70)
- А 55. Сокращение дробей (с. 71)
- **А 56.** Приведение дробей к наименьшему общему знаменателю (с. 72)
- **А 57.** Сравнение, сложение (вычитание) дробей с разными знаменателями (с. 74)
- А 58. Умножение обыкновенных дробей (с. 75)
- А 59. Деление обыкновенных дробей (с. 77)
- А 60. Деление и умножение смешанных чисел (с. 77)
- **А 61.** Нахождение m % от числа A (с. 79)
- **А 62.** Нахождение числа b по его процентам (с. 80)
- **А 63.** Нахождение процентного отношения двух чисел (с. 81)
- **А 64.** Нахождение неизвестного числа пропорции (с. 82)

- **А 65.** Решение задач на проценты с помощью пропорции (с. 83)
- А 66. Нахождение модуля числа (с. 86)
- А 67. Сравнение рациональных чисел (с. 87)
- А 68. Сложение чисел одинакового знака (с. 88)
- А 69. Сложение чисел с разными знаками (с. 89)
- А 70. Вычитание рациональных чисел (с. 90)
- А 71. Умножение чисел с одинаковыми знаками (с. 90)
- А 72. Умножение чисел с разными знаками (с. 91)
- А 73. Деление рациональных чисел (с. 92)
- А 74. Приведение подобных слагаемых (с. 93)
- **А 75.** Откладывание точки на координатной плоскости (с. 94)
- **А 76.** Решение задач на нахождение градусной меры угла (с. 97)
- **А 77.** Решение задач на нахождение периметра и площади треугольника (с. 100)
- **А 78.** Решение задач с использованием формул площадей прямоугольника и квадрата (с. 103)
- **А 79.** Решение задач на нахождение объема прямоугольного параллелепипеда и куба (с. 105)
- **А 80.** Решение задач на нахождение длины окружности и площади круга (с. 106)