
Заменим схему из задачи аналогичной, эквивалентной схемой, немного её перерисовав. Эквивалентная схема примет вид, с которым можно легко работать:

Пойдем от R_6 . Напряжение на нём равно U6 = 108 В. Значит, такое же напряжение будет в сумме и на цепочке R_{12} , которая соединена параллельно с R_6 . $U_{12} = 108$ В.

 $R_{12}=R_1+R_2=2~\mathrm{Om}+4~\mathrm{Om}=6~\mathrm{Om}.$ Сила тока $I_1=I_2=U_{12}/R_{12}=108~\mathrm{B}$ / $6~\mathrm{Om}=18~\mathrm{A}$ ($I_1=I_2$ из-за того, что R_1 и R_2 соединены последовательно).

Сразу найдем U_1 и U_2 по закону Ома:

 $U_1 = I_1 R_1 = 18 \text{ A x 4 Om} = 72 \text{ B}, U_2 = I_2 R_2 = 18 \text{ A x 2 Om} = 36 \text{ B}.$ Заметим, что в сумме эти напряжения, как и положено дают 108 B.

Найдем силу тока I_6 : $I_6 = U_6/R_6 = 108 \; \mathrm{B} \; / \; 15 \; \mathrm{Om} = 7,2 \; \mathrm{A}$

Сила тока, протекающего через R3, будет равна сумме сил токов I_6 и I_1 (или I_2 , без разницы, т.к. они одинаковы). $I_3 = I_6 + I_1 = 18 \ A + 7,2 \ A = 25,2 \ A.$ Всё дело в том, что R_3 подсоединен последовательно к ветке, содержащей резисторы R_1 , R_2 , R_6 .

Зная R_3 и I_3 , найдем напряжение U_3 : $U3 = I_3 R_3 = 25,2$ A x 8 Ом = 201,6 В

Напряжение U_5 будет равно сумме напряжений U_3 и U_6 : $U_5 = U_3 + U_6 = 201,6$ В + 108 В = 309,6 В. Сила тока $I_5 = U_5/R_5 = 309,6$ В / 3 Ом = 103,2 А

Остался R_4 . Сила тока I_4 будет равна сумме I_3 и I_5 : $I_4 = I_3 + I_5 = 25,2$ A + 103,2 A = 128,4 A. Напряжение $U_4 = I_4 R_4 = 128,4$ A x 4 Oм = 513,6 B