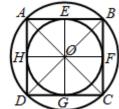

Сторона правильного n-угольника равна a. Вычислите площадь описанного около него и вписанного в него круга, если n=3;4;6.

Для любого правильного многоугольника окружность, ограничивающая круг, описанный около этого многоугольника, проходит через его вершины, а окружность, ограничивающая круг, вписанный в правильный многоугольник, касается его сторон. Центры описанного и вписанного кругов совпадают. R — радиус описанного круга, r — вписанного, S — площадь описанного круга, s — вписанного, S — πR^2 , s — πR^2 .

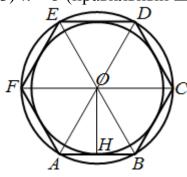
1) n = 3 (правильный треугольник). Центр O описанного и вписанного кругов нахо-


дится в точке пересечения медиан AD, BE и CF (они же — высоты и биссектрисы) треугольника ABC, D, E и F — точки касания вписанного круга со сторонами BC, AC и AB соответственно. OA = OB = OC = R; OD = OE = OF = r, AB = BC = AC = a.

$$R = OA = \frac{2}{3}AD; \ AD = \frac{AC\sqrt{3}}{2} = \frac{a\sqrt{3}}{2} \Rightarrow R = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3};$$
$$S = \pi R^2 = \pi \cdot \frac{3a^2}{9} = \frac{\pi a^2}{3}.$$

$$r = OD = \frac{1}{3}AD = \frac{a\sqrt{3}}{6}; \ s = \pi r^2 = \pi \cdot \frac{3a^2}{36} = \frac{\pi a^2}{12}.$$

2) n = 4 (квадрат). Центр O описанного и вписанного кругов находится в точке пере-


круга со сторонами AB, BC, CD и AD соответственно.

$$AB = BC = CD = AD = a$$
. $AC = a\sqrt{2}$, $OA = \frac{AC}{2} = \frac{a\sqrt{2}}{2}$, T.e. $OA = OB = OC = OD = R = \frac{a\sqrt{2}}{2}$; $S = \pi R^2 = \pi \cdot \frac{2a^2}{4} = \frac{\pi a^2}{2}$.

$$OE = OF = OG = OH = r = \frac{a}{2}; \ s = \pi r^2 = \frac{\pi a^2}{4}.$$

3) n = 6 (правильный шестиугольник).

Радиусы описанного круга OA и OB равны стороне правильного треугольника AOB, а т.к. сторона этого треугольника является стороной правильного шестиугольника ABCDEF со стороной a, то R = a, $S = \pi R^2 = \pi a^2$.

Радиус вписанного круга равен высоте *OH* правильного треугольника *AOB*, т.е. $r = \frac{a\sqrt{3}}{2}$. $s = \pi r^2 = \frac{3\pi a^2}{4}$.

Итак:
$$n=3$$
, $S=\frac{\pi a^2}{3}$, $s=\frac{\pi a^2}{12}$; $n=4$, $S=\frac{\pi a^2}{2}$, $s=\frac{\pi a^2}{4}$; $n=6$, $S=\pi a^2$, $s=\frac{3}{4}\pi a^2$.