$$R_{1\to 2} = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$
 - коэффициент отражения на переходе 1 \to 2

Исходная амплитуда волны A_0

амплитуда первого отраженного сигнала $A_0 * \left(\frac{n_1 - n_2}{n_1 + n_2} \right)$ на переходе 1 \rightarrow 2

$$P_{12}=1-R_{12}=1-\left(rac{n_1-n_2}{n_1+n_2}
ight)^2=\left(rac{2\sqrt{n_1n_2}}{n_1+n_2}
ight)^2$$
 - коэффициент пропускания на переходе $1 o 2$

амплитуда первого пропущенного сигнала $A_0 * \frac{2\sqrt{n_1 n_2}}{n_1 + n_2}$ на переходе 1 \rightarrow 2

$$R_{2\to 3} = \left(\frac{n_2 - n_3}{n_2 + n_3}\right)^2$$
 - коэффициент отражения на переходе 2 \to 3

Амплитуда сигнала после отражения от перехода 2 -> 3

$$A_0 * \frac{2\sqrt{n_1 n_2}}{n_1 + n_2} \frac{n_2 - n_3}{n_2 + n_3}$$

Амплитуда сигнала после прохождения двукратного расстояния четвертьволновой пластины

$$-A_0 * \frac{2\sqrt{n_1 n_2}}{n_1 + n_2} \frac{n_2 - n_3}{n_2 + n_3}$$

Амплитуда отраженного на переходе 2 → 1 сигнала

$$A_0 * \frac{2\sqrt{n_1 n_2}}{n_1 + n_2} \frac{n_2 - n_3}{n_2 + n_3} \frac{n_1 - n_2}{n_1 + n_2}$$

Сравним с амплитудой первого пропущенного сигнала $A_0 * \frac{2\sqrt{n_1 n_2}}{n_1 + n_2}$ на переходе 1 \rightarrow 2

Таким образом амплитуда сигнала за полный цикл изменяется в к= $\frac{n_2 - n_3}{n_2 + n_3} \frac{n_1 - n_2}{n_1 + n_2}$ раз

Амплитуда прошедшей на переходе $2 \to 1$ сигнала $A_0 * \frac{4n_1n_2}{\left(n_1 + n_2\right)^2} \frac{n_2 - n_3}{n_2 + n_3}$

Амплитуда искомой волны
$$A_0 * \frac{n_1 - n_2}{n_1 + n_2} - A_0 * \frac{4n_1n_2}{(n_1 + n_2)^2} \frac{n_2 - n_3}{n_2 + n_3} * (1 + k^2 + k^3 +)$$

$$1 + k^2 + k^3 + = \frac{1}{1 - k} = \frac{1}{1 - \frac{n_2 - n_3}{n_2 + n_3} \frac{n_1 - n_2}{n_1 + n_2}} = \frac{(n_2 + n_3)(n_1 + n_2)}{(n_2 + n_3)(n_1 + n_2) - (n_2 - n_3)(n_1 - n_2)} = \frac{(n_2 + n_3)(n_1 + n_2)}{2n_2^2 + 2n_2n_2}$$

Амплитуда искомой волны
$$A_0 * \frac{n_1 - n_2}{n_1 + n_2} - A_0 * \frac{4n_1n_2}{\left(n_1 + n_2\right)^2} \frac{n_2 - n_3}{n_2 + n_3} \frac{\left(n_2 + n_3\right)\!\left(n_1 + n_2\right)}{2n_2^2 + 2n_1n_3} =$$

$$A_0 * \frac{n_1 - n_2}{n_1 + n_2} \left(1 - \frac{2n_1n_2}{n_2^2 + n_1n_3} \frac{n_2 - n_3}{n_1 - n_2} \right) = A_0 * \frac{1}{n_1 + n_2} \frac{\left(n_2^2 + n_1n_3\right) * \left(n_1 - n_2\right) - 2n_1n_2\left(n_2 - n_3\right)}{\left(n_2^2 + n_1n_3\right)} = A_0 * \frac{1}{n_1 + n_2} \frac{\left(-n_2^2 n_1 + n_1n_3 n_1 - n_2n_2^2 + n_2n_1n_3\right)}{\left(n_2^2 + n_1n_3\right)} = A_0 * \frac{\left(n_1n_3 - n_2^2\right)}{\left(n_2^2 + n_1n_3\right)}$$

 Искомая $\mathbf{R} = \left(\frac{\left(n_1n_3 - n_2^2\right)}{\left(n_2^2 + n_1n_3\right)}\right)^2$

Если
$$n_1 n_3 >> n_2^2$$
 R = $\left(\frac{\left(n_1 n_3 - n_2^2\right)}{\left(n_2^2 + n_1 n_3\right)}\right)^2 \approx \left(\frac{\left(n_1 n_3 - 0\right)}{\left(0 + n_1 n_3\right)}\right)^2 = 1$
Если $n_1 n_3 << n_2^2$ R = $\left(\frac{\left(n_1 n_3 - n_2^2\right)}{\left(n_2^2 + n_1 n_3\right)}\right)^2 \approx \left(\frac{\left(0 - n_2^2\right)}{\left(n_2^2 + 0\right)}\right)^2 = 1$