ПРАКТИЧЕСКАЯРАБОТА № 4

Тема: Операции в двоичной системе счисления

Цель: получить представление о числах в различных системах счисления.

Технология выполнения работы

Задание 1. Перевод чисел из десятичной СС в СС с основанием q

Правило перевода целых чисел из десятичной СС в систему с основанием q:

- 1. Последовательно выполнять деление исходного числа и получаемых частных на q до тех пор, пока не получим частное, меньшее делителя.
- 2. Полученные при таком делении остатки, в системе счисления q записать в обратном порядке (справа налево).

Пример 1. Пример 3.

Перевести 26_{10} в двоичную систему Перевести 241_{10} в восьмеричную систему счисления.

Решение: Решение:

Omsem: 241₁₀=361₈. *Omsem*: 26₁₀=11010₂

Пример 2. Пример4.

Перевести 19_{10} в троичную систему Перевести 3627_{10} в шестнадцатеричную счисления.

Решение: Решение:

 $Omsem: 19_{10}=201_3.$ Т.к. в шестнадцатеричной системе счисления число 11 это B, а число 14 это E, то получаем ответ $E2B_{16}$.

Ответ: 3627₁₀=Е2В₁₆.

Задание 2. Перевод чисел в десятичную систему счисления

Задание выполнить в тетради.

Правило перевода. Для того чтобы число из любой системы счисления перевести в десятичную систему счисления, необходимо его представить в развернутом виде и произвести вычисления.

Пример 5. Перевести число 110110_2 из двоичной системы счисления в десятичную.

$$110110_2 = 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 32 + 16 + 4 + 2 = 54_{10}$$
.

Ответ: $110110_2 = 54_{10}$.

Пример 6. Перевести число $101,01_2$ из двоичной системы счисления в десятичную. *Решение*:

$$101,01_2 = 1*2^2 + 0*2^1 + 1*2^0 + 0*2^{-1} + 1*2^{-2} = 4 + 0 + 1 + 0 + 0,25 = 5,25_{10}.$$

Omeem: $101,01_2 = 5,25_{10}$.

Пример 7. Перевести число 12201₃ из троичной системы счисления в десятичную.

$$12201_3 = 1*3^4 + 2*3^3 + 2*3^2 + 0*3^1 + 1*3^0 = 81+54+18+1 = 154_{10}.$$

Ombem: $12201_3 = 154_{10}$.

Пример 8. Перевести число 1637 из семеричной системы счисления в десятичную.

Решение:
$$163_7 = 1*7^2 + 6*7^1 + 3*7^0 = 49+42+3=94_{10}$$
.

Ответ: $1637 = 94_{10}$.

Пример 9. Перевести число шестнадцатеричной системы счисления $2E_{16}$ в десятичную систему счисления.

Решение:

$$2E_{16} = 2*16^1 + 14*16^0 = 32 + 14 = 46_{10}.$$

Ombem: $2E_{16} = 46_{10}$.

Примеры записать в тетрадь

Задание 3. Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную системы счисления

Задание выполнить в тетради.

Правило перевода целых чисел. Чтобы перевести целое двоичное число в восьмеричную $(8=2^3)$ систему счисления необходимо:

- а) разбить данное число справа налево на группы по 3 цифры в каждой;
- б) рассмотреть каждую группу и записать ее соответствующей цифрой восьмеричной системы счисления.

Пример 10. Перевести число 111010102 в восьмеричную систему счисления.

Решение:11 101 010

3 5 2

Ответ: $11101010_2 = 352_8$.

Пример 11. Перевести число 11110000010110_2 в восьмеричную систему счисления. Решение: $111\ 110\ 000\ 010\ 110$

7 6 0 2 6

Ответ: $11110000010110_2 = 76026_8$.

Правило. Чтобы перевести целое двоичное число в шестнадцатеричную $(16=2^4)$ систему счисления необходимо:

- а) разбить данное число справа налево на группы по 4 цифры в каждой;
- б) рассмотреть каждую группу и записать ее соответствующей цифрой шестнадцатеричной системы счисления.

Пример 12. Перевести число 111000102 в шестнадцатеричную систему счисления.

Решение:

1110 0010

E 2

Ombem: $11100010_2 = E2_{16}$.

Задание 4. Перевести числа из восьмеричной и шестнадцатеричной систем счисления в двоичную систему счисления.

Правило перевода. Для того, чтобы восьмеричное (шестнадцатеричное) число перевести в двоичную систему счисления, необходимо каждую цифру этого числа заменить соответствующим числом, состоящим из 3 (4) цифр двоичной системы счисления.

Пример 13. Перевести число 523₈ перевести в двоичную систему счисления.

Решение:

5 2 3

101 010 011

Ombem: $523_8 = 101010011_2$.

Пример 14. Перевести число 4ВА35₁₆ перевести в двоичную систему счисления.

Решение:

4 B A 3 5

100 1011 1010 0011 0101

Omeem: $4BA35_{16} = 100\ 1011\ 1010\ 0011\ 0101_2$.

Задание 5. Выполнить самостоятельно по вариантам. Выбор варианта по последней цифре номера Вашего рабочего места.

Перевести в десятичну	ую СС числа из ра	азных систем счисления.
-----------------------	-------------------	-------------------------

№ варианта	Двоичная СС	Восьмеричная СС	Шестнадцатеричная СС
1	100011	220,7	A9E,1
2	11011,01	35,6	15A
3	101011	40,5	2FA
4	111011.101	13,7	3C,1
5	11 101	27,31	2FB
6	101001,11	37,4	19,A
7	100100,1	65,3	2F,A
8	1011101	43,5	1C,4
9	101011,01	72,2	AD,3
10	101101,110	30,1	38,B

Задание 6. Перевести числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную СС (работу выполнить по вариантам в соответствии с номером ПК).

№	в двоичную	в восьмеричную	в шестнадцатеричную
варианта			
1	36	197	681
2	197	984	598
3	84	996	368
4	63	899	435
5	96	769	367
6	99	397	769
7	98	435	899
8	69	368	996

9	397	598	984
10	435	681	197

Задание 7. Перевести числа в заданные системы счисления

а) преобразовать двоичные числа в восьмеричные и десятичные СС:

№ варианта	Двоичная СС	№ варианта	Двоичная СС
1	100000	6	1010101
2	100100	7	111001
3	101010	8	111100
4	110101	9	100111
5	10 011	10	110010

б) перевести десятичные числа в двоичную систему счисления:

№ варианта		№ варианта	
1	0,625	6	0,75
2	0,28125	7	7/16
3	0,078125	8	3/8
4	0,34375	9	1/4
5	0,25	10	0,515625

 $110_2*101_2=1110_2=132_{10}$

Задание 9. Выполнить самостоятельно

- 1. Перевести в двоичную систему дату своего дня рождения (день и месяц) и выполнить арифметические операции в двоичной системе (при вычитании от большего числа вычесть меньшее число).
 - 2. Выполненную работу сдать на проверку.